2,648 research outputs found
Recommended from our members
Functional Brain Hyperactivations Are Linked to an Electrophysiological Measure of Slow Interhemispheric Transfer Time after Pediatric Moderate/Severe Traumatic Brain Injury.
Increased task-related blood oxygen level dependent (BOLD) activation is commonly observed in functional magnetic resonance imaging (fMRI) studies of moderate/severe traumatic brain injury (msTBI), but the functional relevance of these hyperactivations and how they are linked to more direct measures of neuronal function remain largely unknown. Here, we investigated how working memory load (WML)-dependent BOLD activation was related to an electrophysiological measure of interhemispheric transfer time (IHTT) in a sample of 18 msTBI patients and 26 demographically matched controls from the UCLA RAPBI (Recovery after Pediatric Brain Injury) study. In the context of highly similar fMRI task performance, a subgroup of TBI patients with slow IHTT had greater BOLD activation with higher WML than both healthy control children and a subgroup of msTBI patients with normal IHTT. Slower IHTT treated as a continuous variable was also associated with BOLD hyperactivation in the full TBI sample and in controls. Higher WML-dependent BOLD activation was related to better performance on a clinical cognitive performance index, an association that was more pronounced within the patient group with slow IHTT. Our previous work has shown that a subgroup of children with slow IHTT after pediatric msTBI has increased risk for poor white matter organization, long-term neurodegeneration, and poor cognitive outcome. BOLD hyperactivations after msTBI may reflect neuronal compensatory processes supporting higher-order capacity demanding cognitive functions in the context of inefficient neuronal transfer of information. The link between BOLD hyperactivations and slow IHTT adds to the multi-modal validation of this electrophysiological measure as a promising biomarker
Earlier visual N1 latencies in expert video-game players: a temporal basis of enhanced visuospatial performance.
Increasing behavioural evidence suggests that expert video game players (VGPs) show enhanced visual attention and visuospatial abilities, but what underlies these enhancements remains unclear. We administered the Poffenberger paradigm with concurrent electroencephalogram (EEG) recording to assess occipital N1 latencies and interhemispheric transfer time (IHTT) in expert VGPs. Participants comprised 15 right-handed male expert VGPs and 16 non-VGP controls matched for age, handedness, IQ and years of education. Expert VGPs began playing before age 10, had a minimum 8 years experience, and maintained playtime of at least 20 hours per week over the last 6 months. Non-VGPs had little-to-no game play experience (maximum 1.5 years). Participants responded to checkerboard stimuli presented to the left and right visual fields while 128-channel EEG was recorded. Expert VGPs responded significantly more quickly than non-VGPs. Expert VGPs also had significantly earlier occipital N1s in direct visual pathways (the hemisphere contralateral to the visual field in which the stimulus was presented). IHTT was calculated by comparing the latencies of occipital N1 components between hemispheres. No significant between-group differences in electrophysiological estimates of IHTT were found. Shorter N1 latencies may enable expert VGPs to discriminate attended visual stimuli significantly earlier than non-VGPs and contribute to faster responding in visual tasks. As successful video-game play requires precise, time pressured, bimanual motor movements in response to complex visual stimuli, which in this sample began during early childhood, these differences may reflect the experience and training involved during the development of video-game expertise, but training studies are needed to test this prediction
Age and interhemispheric transfer time: A failure to replicate.
In a recent study with the Poffenberger paradigm, Brizzolara et al. reported longer estimates of interhemispheric transfer time (IHTT) for children aged 7 years than for adults. They interpreted this finding as evidence for incomplete functional maturity of the corpus callosum in young children. The present study was we were unable to replicate the age effect reported by Brizzolara et al. A closer look at the original study revealed that only 80 observations per child had been collected, which makes it probable that the larger IHTTs in 7-year-olds were caused by stimulus-response compatibility rather than by the lower efficiency of the corpus callosum during childhood years
Diverging volumetric trajectories following pediatric traumatic brain injury.
Traumatic brain injury (TBI) is a significant public health concern, and can be especially disruptive in children, derailing on-going neuronal maturation in periods critical for cognitive development. There is considerable heterogeneity in post-injury outcomes, only partially explained by injury severity. Understanding the time course of recovery, and what factors may delay or promote recovery, will aid clinicians in decision-making and provide avenues for future mechanism-based therapeutics. We examined regional changes in brain volume in a pediatric/adolescent moderate-severe TBI (msTBI) cohort, assessed at two time points. Children were first assessed 2-5 months post-injury, and again 12 months later. We used tensor-based morphometry (TBM) to localize longitudinal volume expansion and reduction. We studied 21 msTBI patients (5 F, 8-18 years old) and 26 well-matched healthy control children, also assessed twice over the same interval. In a prior paper, we identified a subgroup of msTBI patients, based on interhemispheric transfer time (IHTT), with significant structural disruption of the white matter (WM) at 2-5 months post injury. We investigated how this subgroup (TBI-slow, N = 11) differed in longitudinal regional volume changes from msTBI patients (TBI-normal, N = 10) with normal WM structure and function. The TBI-slow group had longitudinal decreases in brain volume in several WM clusters, including the corpus callosum and hypothalamus, while the TBI-normal group showed increased volume in WM areas. Our results show prolonged atrophy of the WM over the first 18 months post-injury in the TBI-slow group. The TBI-normal group shows a different pattern that could indicate a return to a healthy trajectory
Behavioral estimates of interhemispheric transmission time and the signal detection method: A reappraisal
On the basis of a review of the literature, Bashore (1981) concluded that only simple reaction time experiments with manual responses yielded consistent behavioral estimates of interhemispheric transmission time. A closer look at the data, however, revealed that these experiments were the only ones in which large numbers of observations were invariably obtained from many subjects. To investigate whether the methodological flaw was the origin of Bashore’s conclusion, two experiments were run in which subjects had to react to lateralized light flashes. The first experiment dealt with manual reactions, the second with verbal reactions. Each experiment included a condition without catch trials (i.e., simple reaction time) and two conditions with catch trials. Catch trials were trials in which no stimulus was given and in which the response was to be withheld. Both experiments returned consistent estimates of interhemispheric transmission time in the range of 2–3 msec. No differences were found between the simple reaction time condition and the signal detection conditions with catch trials. Data were analyzed according to the variable criterion theory. This showed that the effect of catch trials, as well as the effect of interhemispheric transmission, was situated at the height of the detection criterion, and not in the rate of the information transmission
Tales of the 1001 Nists. The Phonological Implications of Litteral Substitution Sets in 13th-century South-West-Midland texts
Fermion Doubling and a Natural Solution of the Strong CP Problem
We suggest the fermion doubling for all quarks and leptons. It is a
generalization of the neutrino doubling of the seesaw mechanism. The new quarks
and leptons are singlets and carry the electromagnetic charges of their
lighter counterparts. An {\it anomaly free global symmetry} or a
discrete symmetry can be introduced to restrict the Yukawa couplings. The form
of mass matrix is belonging to that of Nelson and Barr even though our model
does not belong to Barr's criterion. The weak CP violation of the
Kobayashi-Maskawa form is obtained through the spontaneous breaking of CP
symmetry at high energy scale. The strong CP solution is through a specific
form of the mass matrix. At low energy, the particle content is the same as in
the standard model. For a model with a global symmetry, in addition there
exists a massless majoron.Comment: SNUTP 93-68, 19 pages 1 TeX figure, ReVTeX 3.
Gravitational field around a time-like current-carrying screwed cosmic string in scalar-tensor theories
In this paper we obtain the space-time generated by a time-like
current-carrying superconducting screwed cosmic string(TCSCS). This
gravitational field is obtained in a modified scalar-tensor theory in the sense
that torsion is taken into account. We show that this solution is comptible
with a torsion field generated by the scalar field . The analysis of
gravitational effects of a TCSCS shows up that the torsion effects that appear
in the physical frame of Jordan-Fierz can be described in a geometric form
given by contorsion term plus a symmetric part which contains the scalar
gradient. As an important application of this solution, we consider the linear
perturbation method developed by Zel'dovich, investigate the accretion of cold
dark matter due to the formation of wakes when a TCSCS moves with speed and
discuss the role played by torsion. Our results are compared with those
obtained for cosmic strings in the framework of scalar-tensor theories without
taking torsion into account.Comment: 21 pages, no figures, Revised Version, presented at the "XXIV-
Encontro Nacional de Fisica de Particulas e Campos ", Caxambu, MG, Brazil, to
appear in Phys. Rev.
The Euler current and relativistic parity odd transport
For a spacetime of odd dimensions endowed with a unit vector field, we
introduce a new topological current that is identically conserved and whose
charge is equal to the Euler character of the even dimensional spacelike
foliations. The existence of this current allows us to introduce new
Chern-Simons-type terms in the effective field theories describing relativistic
quantum Hall states and (2+1) dimensional superfluids. Using effective field
theory, we calculate various correlation functions and identify transport
coefficients. In the quantum Hall case, this current provides the natural
relativistic generalization of the Wen-Zee term, required to characterize the
shift and Hall viscosity in quantum Hall systems. For the superfluid case this
term is required to have nonzero Hall viscosity and to describe superfluids
with non s-wave pairing.Comment: 24 pages. v2: added citations, corrected minor typos in appendi
- …
