8 research outputs found

    The Unicycle in Presence of a Single Disturbance: Observability Properties

    Get PDF
    International audienceThis paper investigates the observability properties of a mobile robot that moves on a planar surface by satisfying the unicycle dynamics and that is equipped with exteroceptive sensors (visual or range sensors). In accordance with the unicycle dynamics, the motion is powered by two independent controls, which are the linear and the angular speed, respectively. We assume that both these speeds are known. We consider the case when the robot motion is affected by a disturbance (or unknown input) that produces an additional (unknown and time dependent) robot speed along a fixed direction. The goal of the paper is to obtain the observability properties of the state that characterizes the robot configuration. The novelty of this observability analysis is that it takes into account the presence of an unknown and time dependent disturbance. Previous works that analyzed similar localization problems, either did not consider the presence of disturbances, or assumed disturbances constant in time. In order to deal with an unknown and time dependent disturbance , the paper adopts a new analytic tool [18]. This analytic tool is the solution of a fundamental open problem in control theory (the Unknown Input Observability problem in the general nonlinear case). We show that the application of this analytic tool is very simple and can be implemented automatically. Additionally, we simulate the aforementioned system and we show that a simple estimator based on an Extended Kalman Filter provides results that fully agree with what we could expect from the observability analysis

    Grasp input optimization taking contact position and object information uncertainties into consideration

    Get PDF
    This paper presents a novel approach for grasp optimization considering contact position and object information uncertainties. In practice, it is hard to grasp an object at the designated or planned contact positions, as errors in measurement, estimation, and control usually exist. Therefore, we first formulate the influences of contact uncertainties on joint torques, contact wrenches, and frictional condition. We then include external wrench uncertainties in the required external wrenches set. Based on this formulation, we define the linear grasp optimization problem for two kinds of frictional contact modelsfrictional point contact and soft finger contactso that we can successfully grasp an object even if deviations in contact point, object weight, and center of mass occur. The validity of our approach is shown by means of numerical examples and the result of experiments. Ā© 2004-2012 IEEE

    Grasp Input Optimization Taking Contact Position and Object Information Uncertainties into Consideration

    Full text link

    Cartographie, localisation et planification simultaneĢes ā€˜en ligneā€™, aĢ€ long terme et aĢ€ grande eĢchelle pour robot mobile

    Get PDF
    Pour eĢ‚tre en mesure de naviguer dans des endroits inconnus et non structureĢs, un robot doit pouvoir cartographier lā€™environnement afin de sā€™y localiser. Ce probleĢ€me est connu sous le nom de cartographie et localisation simultaneĢes (ou SLAM pour Simultaneous Localization and Mapping). Une fois la carte de lā€™environnement creĢeĢe, des taĢ‚ches requeĢrant un deĢplacement dā€™un endroit connu aĢ€ un autre peuvent ainsi eĢ‚tre planifieĢes. La charge de calcul du SLAM est deĢpendante de la grandeur de la carte. Un robot a une puissance de calcul embarqueĢe limiteĢe pour arriver aĢ€ traiter lā€™information ā€˜en ligneā€™, cā€™est-aĢ€-dire aĢ€ bord du robot avec un temps de traitement des donneĢes moins long que le temps dā€™acquisition des donneĢes ou le temps maximal permis de mise aĢ€ jour de la carte. La navigation du robot tout en faisant le SLAM est donc limiteĢe par la taille de lā€™environnement aĢ€ cartographier. Pour reĢsoudre cette probleĢmatique, lā€™objectif est de deĢvelopper un algorithme de SPLAM (Simultaneous Planning Localization and Mapping) permettant la navigation peu importe la taille de lā€™environment. Pour geĢrer efficacement la charge de calcul de cet algorithme, la meĢmoire du robot est diviseĢe en une meĢmoire de travail et une meĢmoire aĢ€ long terme. Lorsque la contrainte de traitement ā€˜en ligneā€™ est atteinte, les endroits vus les moins souvent et qui ne sont pas utiles pour la navigation sont transfeĢreĢes de la meĢmoire de travail aĢ€ la meĢmoire aĢ€ long terme. Les endroits transfeĢreĢs dans la meĢmoire aĢ€ long terme ne sont plus utiliseĢs pour la navigation. Cependant, ces endroits transfeĢreĢs peuvent eĢ‚tre reĢcupeĢreĢes de la meĢmoire aĢ€ long terme aĢ€ la meĢmoire de travail lorsque le le robot sā€™approche dā€™un endroit voisin encore dans la meĢmoire de travail. Le robot peut ainsi se rappeler increĢmentalement dā€™une partie de lā€™environment a priori oublieĢe afin de pouvoir sā€™y localiser pour le suivi de trajectoire. Lā€™algorithme, nommeĢ RTAB-Map, a eĢteĢ testeĢ sur le robot AZIMUT-3 dans une premieĢ€re expeĢrience de cartographie sur cinq sessions indeĢpendantes, afin dā€™eĢvaluer la capaciteĢ du systeĢ€me aĢ€ fusionner plusieurs cartes ā€˜en ligneā€™. La seconde expeĢrience, avec le meĢ‚me robot utiliseĢ lors de onze sessions totalisant 8 heures de deĢplacement, a permis dā€™eĢvaluer la capaciteĢ du robot de naviguer de facĢ§on autonome tout en faisant du SLAM et planifier des trajectoires continuellement sur une longue peĢriode en respectant la contrainte de traitement ā€˜en ligneā€™ . Enfin, RTAB-Map est compareĢ aĢ€ dā€™autres systeĢ€mes de SLAM sur quatre ensembles de donneĢes populaires pour des applications de voiture autonome (KITTI), balayage aĢ€ la main avec une cameĢra RGB-D (TUM RGB-D), de drone (EuRoC) et de navigation inteĢrieur avec un robot PR2 (MIT Stata Center). Les reĢsultats montrent que RTAB-Map peut eĢ‚tre utiliseĢ sur de longue peĢriode de temps en navigation autonome tout en respectant la contrainte de traitement ā€˜en ligneā€™ et avec une qualiteĢ de carte comparable aux approches de lā€™eĢtat de lā€™art en SLAM visuel et avec teĢleĢmeĢ€tre laser. ll en reĢsulte dā€™un logiciel libre deĢployeĢ dans une multitude dā€™applications allant des robots mobiles inteĢrieurs peu couĢ‚teux aux voitures autonomes, en passant par les drones et la modeĢlisation 3D de lā€™inteĢrieur dā€™une maison

    Design and Development of Biofeedback Stick Technology (BfT) to Improve the Quality of Life of Walking Stick Users

    Get PDF
    Biomedical engineering has seen a rapid growth in recent times, where the aim to facilitate and equip humans with the latest technology has become widespread globally. From high-tech equipment ranging from CT scanners, MRI equipment, and laser treatments, to the design, creation, and implementation of artificial body parts, the field of biomedical engineering has significantly contributed to mankind. Biomedical engineering has facilitated many of the latest developments surrounding human mobility, with advancement in mobility aids improving human movement for people with compromised mobility either caused by an injury or health condition. A review of the literature indicated that mobility aids, especially walking sticks, and appropriate training for their use, are generally prescribed by allied health professionals (AHP) to walking stick users for rehabilitation and activities of daily living (ADL). However, feedback from AHP is limited to the clinical environment, leaving walking stick users vulnerable to falls and injuries due to incorrect usage. Hence, to mitigate the risk of falls and injuries, and to facilitate a routine appraisal of individual patientā€™s usage, a simple, portable, robust, and reliable tool was developed which provides the walking stick users with real-time feedback upon incorrect usage during their activities of daily living (ADL). This thesis aimed to design and develop a smart walking stick technology: Biofeedback stick technology (BfT). The design incorporates the approach of patient and public involvement (PPI) in the development of BfT to ensure that BfT was developed as per the requirements of walking stick users and AHP recommendations. The newly developed system was tested quantitatively for; validity, reliability, and reproducibility against gold standard equipment such as the 3D motion capture system, force plates, optical measurement system for orientation, weight bearing, and step count. The system was also tested qualitatively for its usability by conducting semi-informal interviews with AHPs and walking stick users. The results of these studies showed that the newly developed system has good accuracy, reported above 95% with a maximum inaccuracy of 1Ā°. The data reported indicates good reproducibility. The angles, weight, and steps recorded by the system during experiments are within the values published in the literature. From these studies, it was concluded that, BfT has the potential to improve the lives of walking stick users and that, with few additional improvements, appropriate approval from relevant regulatory bodies, and robust clinical testing, the technology has a huge potential to carve its way to a commercial market
    corecore