4 research outputs found

    An integrated control strategy to solve the disturbance decoupling problem for max-plus linear systems with applications to a high throughput screening system

    Get PDF
    International audienceThis paper presents the new investigations on the disturbance decoupling problem (DDP) for the geometric control of max-plus linear systems. The classical DDP concept in the geometric control theory means that the controlled outputs will not be changed by any disturbances. In practical manufacturing systems, solving for the DDP would require further delays on the output parts than the existing delays caused by the system breakdown. The new proposed modified disturbance decoupling problem (MDDP) in this paper ensures that the controlled output signals will not be delayed more than the existing delays caused by the disturbances in order to achieve the just-in-time optimal control. Furthermore, this paper presents the integration of output feedback and open-loop control strategies to solve for the MDDP, as well as for the DDP. If these controls can only solve for the MDDP, but not for the DDP, an evaluation principle is established to compare the distance between two output signals generated by controls solving for the MDDP and DDP, respectively. This distance can be interpreted as the number of tokens or firings that are needed in order for the controls to solve for the DDP. Moreover, another alternative approach is finding a new disturbance mapping in order to guarantee the solvability of the DDP by the same optimal control for the MDDP. The main results of this paper are illustrated by using a timed event graph model of a high throughput screening system in drug discovery.</p

    An adaptive autopilot design for an uninhabited surface vehicle

    Get PDF
    An adaptive autopilot design for an uninhabited surface vehicle Andy SK Annamalai The work described herein concerns the development of an innovative approach to the design of autopilot for uninhabited surface vehicles. In order to fulfil the requirements of autonomous missions, uninhabited surface vehicles must be able to operate with a minimum of external intervention. Existing strategies are limited by their dependence on a fixed model of the vessel. Thus, any change in plant dynamics has a non-trivial, deleterious effect on performance. This thesis presents an approach based on an adaptive model predictive control that is capable of retaining full functionality even in the face of sudden changes in dynamics. In the first part of this work recent developments in the field of uninhabited surface vehicles and trends in marine control are discussed. Historical developments and different strategies for model predictive control as applicable to surface vehicles are also explored. This thesis also presents innovative work done to improve the hardware on existing Springer uninhabited surface vehicle to serve as an effective test and research platform. Advanced controllers such as a model predictive controller are reliant on the accuracy of the model to accomplish the missions successfully. Hence, different techniques to obtain the model of Springer are investigated. Data obtained from experiments at Roadford Reservoir, United Kingdom are utilised to derive a generalised model of Springer by employing an innovative hybrid modelling technique that incorporates the different forward speeds and variable payload on-board the vehicle. Waypoint line of sight guidance provides the reference trajectory essential to complete missions successfully. The performances of traditional autopilots such as proportional integral and derivative controllers when applied to Springer are analysed. Autopilots based on modern controllers such as linear quadratic Gaussian and its innovative variants are integrated with the navigation and guidance systems on-board Springer. The modified linear quadratic Gaussian is obtained by combining various state estimators based on the Interval Kalman filter and the weighted Interval Kalman filter. Change in system dynamics is a challenge faced by uninhabited surface vehicles that result in erroneous autopilot behaviour. To overcome this challenge different adaptive algorithms are analysed and an innovative, adaptive autopilot based on model predictive control is designed. The acronym ‘aMPC’ is coined to refer to adaptive model predictive control that is obtained by combining the advances made to weighted least squares during this research and is used in conjunction with model predictive control. Successful experimentation is undertaken to validate the performance and autonomous mission capabilities of the adaptive autopilot despite change in system dynamics.EPSRC (Engineering and Physical Sciences Research Council
    corecore