25,350 research outputs found

    TasNet: time-domain audio separation network for real-time, single-channel speech separation

    Full text link
    Robust speech processing in multi-talker environments requires effective speech separation. Recent deep learning systems have made significant progress toward solving this problem, yet it remains challenging particularly in real-time, short latency applications. Most methods attempt to construct a mask for each source in time-frequency representation of the mixture signal which is not necessarily an optimal representation for speech separation. In addition, time-frequency decomposition results in inherent problems such as phase/magnitude decoupling and long time window which is required to achieve sufficient frequency resolution. We propose Time-domain Audio Separation Network (TasNet) to overcome these limitations. We directly model the signal in the time-domain using an encoder-decoder framework and perform the source separation on nonnegative encoder outputs. This method removes the frequency decomposition step and reduces the separation problem to estimation of source masks on encoder outputs which is then synthesized by the decoder. Our system outperforms the current state-of-the-art causal and noncausal speech separation algorithms, reduces the computational cost of speech separation, and significantly reduces the minimum required latency of the output. This makes TasNet suitable for applications where low-power, real-time implementation is desirable such as in hearable and telecommunication devices.Comment: Camera ready version for ICASSP 2018, Calgary, Canad

    Efficient Synthesis of Room Acoustics via Scattering Delay Networks

    Get PDF
    An acoustic reverberator consisting of a network of delay lines connected via scattering junctions is proposed. All parameters of the reverberator are derived from physical properties of the enclosure it simulates. It allows for simulation of unequal and frequency-dependent wall absorption, as well as directional sources and microphones. The reverberator renders the first-order reflections exactly, while making progressively coarser approximations of higher-order reflections. The rate of energy decay is close to that obtained with the image method (IM) and consistent with the predictions of Sabine and Eyring equations. The time evolution of the normalized echo density, which was previously shown to be correlated with the perceived texture of reverberation, is also close to that of IM. However, its computational complexity is one to two orders of magnitude lower, comparable to the computational complexity of a feedback delay network (FDN), and its memory requirements are negligible
    • …
    corecore