164,176 research outputs found

    Wireless Capsule Endoscope for Targeted Drug Delivery: Mechanics and Design Considerations

    Get PDF

    Multi-level agent-based modeling - A literature survey

    Full text link
    During last decade, multi-level agent-based modeling has received significant and dramatically increasing interest. In this article we present a comprehensive and structured review of literature on the subject. We present the main theoretical contributions and application domains of this concept, with an emphasis on social, flow, biological and biomedical models.Comment: v2. Ref 102 added. v3-4 Many refs and text added v5-6 bibliographic statistics updated. v7 Change of the name of the paper to reflect what it became, many refs and text added, bibliographic statistics update

    Parylene-based electret power generators

    Get PDF
    n electret power generator is developed using a new electret made of a charged parylene HT® thin-film polymer. Here, parylene HT® is a room-temperature chemical-vapor-deposited thin-film polymer that is MEMS and CMOS compatible. With corona charge implantation, the surface charge density of parylene HT® is measured as high as 3.69 mC m^−2. Moreover, it is found that, with annealing at 400 °C for 1 h before charge implantation, both the long-term stability and the high-temperature reliability of the electret are improved. For the generator, a new design of the stator/rotor is also developed. The new micro electret generator does not require any sophisticated gap-controlling structure such as tethers. With the conformal coating capability of parylene HT®, it is also feasible to have the electret on the rotors, which is made of either a piece of metal or an insulator. The maximum power output, 17.98 µW, is obtained at 50 Hz with an external load of 80 MΩ. For low frequencies, the generator can harvest 7.7 µW at 10 Hz and 8.23 µW at 20 Hz

    Materials selection and design of microelectrothermal bimaterial actuators

    No full text
    A common form of MEMS actuator is a thermally actuated bimaterial, which is easy to fabricate by surface micromachining and permits out of plane actuation, which is otherwise difficult to achieve. This paper presents an analytical framework for the design of such microelectrothermal bimaterial actuators. Mechanics relationships for a cantilever bimaterial strip subjected to a uniform temperature were applied to obtain expressions for performance metrics for the actuator, i.e., maximum work/volume, blocked (force) moment, and free-end (displacement) slope. Results from finite-element analysis and closed form relations agree well to within 1%. The optimal performance for a given pair of materials and the corresponding thickness ratio were determined. Contours of equal performance corresponding to commonly used substrates (e.g., Si, SiO2) were plotted in the domain of governing material properties (thermal expansion coefficient and Young's modulus) to identify candidate materials for further development. These results and the accompanying methodology provide a rational basis for comparing the suitability of "standard" materials for microelectrothermal actuators, as well as identifying materials that might be suitable for further research

    Optimization of three-dimensional micropost microcavities for cavity quantum electrodynamics

    Get PDF
    This article presents a detailed analysis, based on the first-principles finite-difference time-domain method, of the resonant frequency, quality factor (Q), mode volume (V), and radiation pattern of the fundamental (HE11) mode in a three-dimensional distributed-Bragg-reflector (DBR) micropost microcavity. By treating this structure as a one-dimensional cylindrical photonic crystal containing a single defect, we are able to push the limits of Q/V beyond those achievable by standard micropost designs, based on the simple rules established for planar DBR microcavities. We show that some of the rules that work well for designing large-diameter microposts (e.g., high-refractive index contrast) fail to provide high-quality cavities with small diameters. By tuning the thicknesses of mirror layers and the spacer, the number of mirror pairs, the refractive indices of high and low refractive index regions, and the cavity diameter, we are able to achieve Q as high as 10^4, together with a mode volume of 1.6 cubic wavelengths of light in the high-refractive-index material. The combination of high Q and small V makes these structures promising candidates for the observation of such cavity quantum electrodynamics phenomena as strong coupling between a quantum dot and the cavity field, and single-quantum-dot lasing.Comment: 11 pages, 8 figure

    SPECT Imaging of Pulmonary Blood Flow in a Rat

    Get PDF
    Small animal imaging is experiencing rapid development due to its importance in providing high-throughput phenotypic data for functional genomics studies. We have developed a single photon emission computed tomography (SPECT) system to image the pulmonary perfusion distribution in the rat. A standard gamma camera, equipped with a pinhole collimator, was used to acquire SPECT projection images at 40 sec/view of the rat thorax following injection of Tc99m labeled albumin that accumulated in the rat\u27s lungs. A voxel-driven, ordered-subset expectation maximization reconstruction was implemented. Following SPECT imaging, the rat was imaged using micro-CT with Feldkamp conebeam reconstruction. The two reconstructed image volumes were fused to provide a structure/function image of the rat thorax. Reconstruction accuracy and performance were evaluated using numerical simulations and actual imaging of an experimental phantom consisting of Tc99m filled chambers with known diameters and count rates. Full-width half-maximum diameter measurement errors decreased with increasing chamber diameter, ranging from \u3c 6% down to 0.1%. Errors in the ratio of count rate estimates between tubes were also diameter dependent but still relatively small. This preliminary study suggests that SPECT will be useful for imaging and quantifying the pulmonary blood flow distribution and the distribution of Tc99m labeled ligands in the lungs of small laboratory animals

    Improving the Dielectric Properties of Polymers by Incorporating Nano-particles.

    Get PDF
    The paper presents a brief review of the promise of nanotechnology applied to polymeric insulation materials and discusses the electrical properties found. For a variety of nanocomposites, the dielectric behaviour has shown that the interface between the embedded particles and host matrix holds the key to the understanding of the bulk phenomena being observed. Dielectric spectroscopy verified the motion of carriers through the interaction zones that surround the particles. The obvious improvements in endurance and breakdown strength of nanocomposites may be due to a reduction of charge accumulation. PEA space charge tests confirm this charge dissipation. By examining the onset field of space charge accumulation, it may be possible to determine whether a system is likely to be useful

    Post-Acquisition Small-Animal Respiratory Gated Imaging Using Micro Cone-Beam CT

    Get PDF
    On many occasions, it is desirable to image lungs in vivo to perform a pulmonary physiology study. Since the lungs are moving, gating with respect to the ventilatory phase has to be performed in order to minimize motion artifacts. Gating can be done in real time, similar to cardiac imaging in clinical applications, however, there are technical problems that have lead us to investigate different approaches. The problems include breath-to-breath inconsistencies in tidal volume, which makes the precise detection of ventilatory phase difficult, and the relatively high ventilation rates seen in small animals (rats and mice have ventilation rates in the range of a hundred cycles per minute), which challenges the capture rate of many imaging systems (this is particularly true of our system which utilizes cone-beam geometry and a 2 dimensional detector). Instead of pre-capture ventilation gating we implemented a method of post-acquisition gating. We acquire a sequence of projections images at 30 frames per second for each of 360 viewing angles. During each capture sequence the rat undergoes multiple ventilation cycles. Using the sequence of projection images, an automated region of interest algorithm, based on integrated grayscale intensity, tracts the ventilatory phase of the lungs. In the processing of an image sequence, multiple projection images are identified at a particular phase and averaged to improve the signal-to-ratio. The resulting averaged projection images are input to a Feldkamp cone-beam algorithm reconstruction algorithm in order to obtain isotropic image volumes. Minimal motion artifact data sets improve qualitative and quantitative analysis techniques useful in physiologic studies of pulmonary structure and function
    corecore