2 research outputs found

    SwarmTouch: Tactile Interaction of Human with Impedance Controlled Swarm of Nano-Quadrotors

    Full text link
    We propose a novel interaction strategy for a human-swarm communication when a human operator guides a formation of quadrotors with impedance control and receives vibrotactile feedback. The presented approach takes into account the human hand velocity and changes the formation shape and dynamics accordingly using impedance interlinks simulated between quadrotors, which helps to achieve a life-like swarm behavior. Experimental results with Crazyflie 2.0 quadrotor platform validate the proposed control algorithm. The tactile patterns representing dynamics of the swarm (extension or contraction) are proposed. The user feels the state of the swarm at his fingertips and receives valuable information to improve the controllability of the complex life-like formation. The user study revealed the patterns with high recognition rates. Subjects stated that tactile sensation improves the ability to guide the drone formation and makes the human-swarm communication much more interactive. The proposed technology can potentially have a strong impact on the human-swarm interaction, providing a new level of intuitiveness and immersion into the swarm navigation.Comment: \c{opyright} 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. arXiv admin note: substantial text overlap with arXiv:1909.0229

    A Case Study on the Advantages of 3D Walkthroughs over Photo Stitching Techniques

    Get PDF
    Virtual tours and interactive walkthroughs enable a more in-depth platform for communicating information. Many current techniques employ the use of Photo Stitching to accomplish this. However, over the last decade advancements in computing power and the accessibility of game engines, meant that developing rich 3D content for virtual tours is more possible than ever before. As such, the purpose of this paper is to present a study into the advantages of developing an interactive 3D virtual tour of student facilities, using the Unreal Development 4 Game Engine, for educational establishments. The project aims to demonstrate a comparison between the use of Photo Stitching and 3D Modelled interactive walkthrough for developing rich visual environments. The research reveals that the approach in this paper can improve educational facilities prominence within universities, and contains many advantages over Photo Stitching techniques
    corecore