558 research outputs found

    Analysis of DoS Attacks at MAC Layer in Mobile Adhoc Networks

    Get PDF
    —Wireless network security has received tremendous attention due to the vulnerabilities exposed in the open communication medium. The most common wireless Medium Access Control (MAC) protocol is IEEE 802.11, which assumes all the nodes in the network are cooperative. However, nodes may purposefully misbehave in order to disrupt network performance, obtain extra bandwidth and conserve resources. These MAC layer misbehaviours can lead to Denial of Service (DoS) attacks which can disrupt the network operation. There is a lack of comprehensive analysis of MAC layer misbehaviour driven DoS attacks for the IEEE 802.11 protocol. This research studied possible MAC layer DoS attack strategies that are driven by the MAC layer malicious/selfish nodes and investigates the performance of the IEEE 802.11 protocol. Such DoS attacks caused by malicious and selfish nodes violating backoff timers associated with the protocol. The experimental and analytical approach evaluates several practical MAC layer backoff value manipulation and the impact of such attacks on the network performance and stability in MANETs. The simulation results show that introducing DoS attacks at MAC layer could significantly affect the network throughput and data packet collision rate. This paper concludes that DoS attacks with selfish/malicious intend can obtain a larger throughput by denying well-behaved nodes to obtain deserved throughput, also DoS attacks with the intend of complete destruction of the network can succee

    A Lightweight and Attack Resistant Authenticated Routing Protocol for Mobile Adhoc Networks

    Full text link
    In mobile ad hoc networks, by attacking the corresponding routing protocol, an attacker can easily disturb the operations of the network. For ad hoc networks, till now many secured routing protocols have been proposed which contains some disadvantages. Therefore security in ad hoc networks is a controversial area till now. In this paper, we proposed a Lightweight and Attack Resistant Authenticated Routing Protocol (LARARP) for mobile ad hoc networks. For the route discovery attacks in MANET routing protocols, our protocol gives an effective security. It supports the node to drop the invalid packets earlier by detecting the malicious nodes quickly by verifying the digital signatures of all the intermediate nodes. It punishes the misbehaving nodes by decrementing a credit counter and rewards the well behaving nodes by incrementing the credit counter. Thus it prevents uncompromised nodes from attacking the routes with malicious or compromised nodes. It is also used to prevent the denial-of-service (DoS) attacks. The efficiency and effectiveness of LARARP are verified through the detailed simulation studies.Comment: 14 Pages, IJWM

    Exploratory study to explore the role of ICT in the process of knowledge management in an Indian business environment

    Get PDF
    In the 21st century and the emergence of a digital economy, knowledge and the knowledge base economy are rapidly growing. To effectively be able to understand the processes involved in the creating, managing and sharing of knowledge management in the business environment is critical to the success of an organization. This study builds on the previous research of the authors on the enablers of knowledge management by identifying the relationship between the enablers of knowledge management and the role played by information communication technologies (ICT) and ICT infrastructure in a business setting. This paper provides the findings of a survey collected from the four major Indian cities (Chennai, Coimbatore, Madurai and Villupuram) regarding their views and opinions about the enablers of knowledge management in business setting. A total of 80 organizations participated in the study with 100 participants in each city. The results show that ICT and ICT infrastructure can play a critical role in the creating, managing and sharing of knowledge in an Indian business environment

    Security Analysis of Vehicular Ad Hoc Networks (VANET)

    Full text link
    Vehicular Ad Hoc Networks (VANET) has mostly gained the attention of today's research efforts, while current solutions to achieve secure VANET, to protect the network from adversary and attacks still not enough, trying to reach a satisfactory level, for the driver and manufacturer to achieve safety of life and infotainment. The need for a robust VANET networks is strongly dependent on their security and privacy features, which will be discussed in this paper. In this paper a various types of security problems and challenges of VANET been analyzed and discussed; we also discuss a set of solutions presented to solve these challenges and problems.Comment: 6 pages; 2010 Second International Conference on Network Applications, Protocols and Service

    Collaborative Profile Assessment to Secure MANET by DDOS Attack

    Get PDF
    In the Mobile Ad-hoc Network, nodes bind together in the centralised authority's absence because reliability is one of the main challenges. The MANETS protective architecture provides some consequential problems due to the specific features of MANETS. The DDoS attack in the network is not quickly detectable. A management infrastructure that guarantees extensive security and the required network performance from attacks must be developed to overcome the barriers. Direct methods cannot be found successfully in mobile ad hoc networks in which network topology differs animatedly. Different DDoS security systems boost the network's output in front of an attacker to deactivate mismanagement, like NTRS. In this study, the Distributed Profile Evaluation Mechanism (DPEAP) DDoS Attack Effect in the Network proposes that compromise packets tossed out of the network beyond the network's capacity. The NTRS was a modern methodology in the study, and the DPEAP suggested is a new technique. The DPEAP identifies the attacker's behaviour by matching an attacker's profile with the ordinary nodes on the network, provided that the Node Profile is regular in the foaming of the proper network data delivery. The DPEAP then declare that the attacker's network has no hazard. In contrast with NTRS in MANET, the DPEAP method is stable and efficient

    Collaboration Enforcement In Mobile Ad Hoc Networks

    Get PDF
    Mobile Ad hoc NETworks (MANETs) have attracted great research interest in recent years. Among many issues, lack of motivation for participating nodes to collaborate forms a major obstacle to the adoption of MANETs. Many contemporary collaboration enforcement techniques employ reputation mechanisms for nodes to avoid and penalize malicious participants. Reputation information is propagated among participants and updated based on complicated trust relationships to thwart false accusation of benign nodes. The aforementioned strategy suffers from low scalability and is likely to be exploited by adversaries. To address these problems, we first propose a finite state model. With this technique, no reputation information is propagated in the network and malicious nodes cannot cause false penalty to benign hosts. Misbehaving node detection is performed on-demand; and malicious node punishment and avoidance are accomplished by only maintaining reputation information within neighboring nodes. This scheme, however, requires that each node equip with a tamper-proof hardware. In the second technique, no such restriction applies. Participating nodes classify their one-hop neighbors through direct observation and misbehaving nodes are penalized within their localities. Data packets are dynamically rerouted to circumvent selfish nodes. In both schemes, overall network performance is greatly enhanced. Our approach significantly simplifies the collaboration enforcement process, incurs low overhead, and is robust against various malicious behaviors. Simulation results based on different system configurations indicate that the proposed technique can significantly improve network performance with very low communication cost
    • …
    corecore