3 research outputs found

    Routing Misbehavior Detection in MANETs Using 2ACK, Journal of Telecommunications and Information Technology, 2010, nr 4

    Get PDF
    This paper proposes routing misbehavior detection in MANETs using 2ACK scheme. Routing protocols for MANETs are designed based on the assumption that all participating nodes are fully cooperative. However, due to the open structure and scarcely available battery-based energy, node misbehavior may exist. In the existing system, there is a possibility that when a sender chooses an intermediate link to send some message to a destination, the intermediate link may pose problems such as, the intermediate node may not forward the packets to destination, it may take very long time to send packets or it may modify the contents of the packet. In MANETs, as there is no retransmission of packets once it is sent, care must be taken not to loose packets. We have analyzed and evaluated a technique, termed 2ACK scheme to detect and mitigate the effect of such routing misbehavior in MANETs environment. It is based on a simple 2-hop acknowledgment packet that is sent back by the receiver of the next-hop link. 2ACK transmission takes place for only a fraction of data packets, but not for all. Such a selective acknowledgment is intended to reduce the additional routing overhead caused by the 2ACK scheme. Our contribution in this paper is that, we have embedded some security aspects with 2ACK to check confidentiality of the message by verifying the original hash code with the hash code generated at the destination. If 2ACK is not received within the wait time or the hash code of the message is changed then the node to next hop link of sender is declared as the misbehaving link. We simulated the routing misbehavior detection using 2ACK scheme to test the operation scheme in terms of performance parameters

    Optimal route reflection topology design

    Get PDF
    An Autonomous System (AS) is a group of Internet Protocol-based networks with a single and clearly defined external routing policy, usually under single ownership, trust or administrative control. The AS represents a connected group of one or more blocks of IP addresses, called IP prefixes, that have been assigned to that organization and provides a single routing policy to systems outside the AS. The Internet is composed of the interconnection of several thousands of ASes, which use the Border Gateway Protocol (BGP) to exchange network prefixes (aggregations of IP addresses) reachability advertisements. BGP advertisements (or updates) are sent over BGP sessions administratively set between pairs of routers. BGP is a path vector routing protocol and is used to span different ASes. A path vector protocol defines a route as a pairing between a destination and the attributes of the path to that destination. Interior Border Gateway Protocol (iBGP) refers to the BGP neighbor relationship within the same AS. When BGP neighbor relationship are formed between two peers belonging to different AS are called Exterior Border Gateway Protocol (eBGP). In the last case, BGP routers are called Autonomous System Border Routers (ASBRs), while those running only iBGP sessions are referred to as Internal Routers (IRs). Traditional iBGP implementations require a full-mesh of sessions among routers of each AS

    Journal of Telecommunications and Information Technology, 2010, nr 4

    Get PDF
    kwartalni
    corecore