10 research outputs found

    Feature Mixing for Writer Retrieval and Identification on Papyri Fragments

    Full text link
    This paper proposes a deep-learning-based approach to writer retrieval and identification for papyri, with a focus on identifying fragments associated with a specific writer and those corresponding to the same image. We present a novel neural network architecture that combines a residual backbone with a feature mixing stage to improve retrieval performance, and the final descriptor is derived from a projection layer. The methodology is evaluated on two benchmarks: PapyRow, where we achieve a mAP of 26.6 % and 24.9 % on writer and page retrieval, and HisFragIR20, showing state-of-the-art performance (44.0 % and 29.3 % mAP). Furthermore, our network has an accuracy of 28.7 % for writer identification. Additionally, we conduct experiments on the influence of two binarization techniques on fragments and show that binarizing does not enhance performance. Our code and models are available to the community.Comment: accepted for HIP@ICDAR202

    DeepOtsu: Document Enhancement and Binarization using Iterative Deep Learning

    Get PDF
    This paper presents a novel iterative deep learning framework and apply it for document enhancement and binarization. Unlike the traditional methods which predict the binary label of each pixel on the input image, we train the neural network to learn the degradations in document images and produce the uniform images of the degraded input images, which allows the network to refine the output iteratively. Two different iterative methods have been studied in this paper: recurrent refinement (RR) which uses the same trained neural network in each iteration for document enhancement and stacked refinement (SR) which uses a stack of different neural networks for iterative output refinement. Given the learned uniform and enhanced image, the binarization map can be easy to obtain by a global or local threshold. The experimental results on several public benchmark data sets show that our proposed methods provide a new clean version of the degraded image which is suitable for visualization and promising results of binarization using the global Otsu's threshold based on the enhanced images learned iteratively by the neural network.Comment: Accepted by Pattern Recognitio

    U-Net-bin: hacking the document image binarization contest

    Get PDF
    Image binarization is still a challenging task in a variety of applications. In particular, Document Image Binarization Contest (DIBCO) is organized regularly to track the state-of-the-art techniques for the historical document binarization. In this work we present a binarization method that was ranked first in the DIBCO`17 contest. It is a convolutional neural network (CNN) based method which uses U-Net architecture, originally designed for biomedical image segmentation. We describe our approach to training data preparation and contest ground truth examination and provide multiple insights on its construction (so called hacking). It led to more accurate historical document binarization problem statement with respect to the challenges one could face in the open access datasets. A docker container with the final network along with all the supplementary data we used in the training process has been published on Github.The work was partially funded by Russian Foundation for Basic Research (projects 17-29-07092 and 17-29-07093)

    A generalization of Otsu method for linear separation of two unbalanced classes in document image binarization

    Get PDF
    The classical Otsu method is a common tool in document image binarization. Often, two classes, text and background, are imbalanced, which means that the assumption of the classical Otsu method is not met. In this work, we considered the imbalanced pixel classes of background and text: weights of two classes are different, but variances are the same. We experimentally demonstrated that the employment of a criterion that takes into account the imbalance of the classes' weights, allows attaining higher binarization accuracy. We described the generalization of the criteria for a two-parametric model, for which an algorithm for the optimal linear separation search via fast linear clustering was proposed. We also demonstrated that the two-parametric model with the proposed separation allows increasing the image binarization accuracy for the documents with a complex background or spots.We are grateful for the insightful comments offered by D.P. Nikolaev. This research was partially supported by the Russian Foundation for Basic Research No. 19-29-09066 and 18-07-01387

    BiNet:Degraded-Manuscript Binarization in Diverse Document Textures and Layouts using Deep Encoder-Decoder Networks

    Get PDF
    Handwritten document-image binarization is a semantic segmentation process to differentiate ink pixels from background pixels. It is one of the essential steps towards character recognition, writer identification, and script-style evolution analysis. The binarization task itself is challenging due to the vast diversity of writing styles, inks, and paper materials. It is even more difficult for historical manuscripts due to the aging and degradation of the documents over time. One of such manuscripts is the Dead Sea Scrolls (DSS) image collection, which poses extreme challenges for the existing binarization techniques. This article proposes a new binarization technique for the DSS images using the deep encoder-decoder networks. Although the artificial neural network proposed here is primarily designed to binarize the DSS images, it can be trained on different manuscript collections as well. Additionally, the use of transfer learning makes the network already utilizable for a wide range of handwritten documents, making it a unique multi-purpose tool for binarization. Qualitative results and several quantitative comparisons using both historical manuscripts and datasets from handwritten document image binarization competition (H-DIBCO and DIBCO) exhibit the robustness and the effectiveness of the system. The best performing network architecture proposed here is a variant of the U-Net encoder-decoders.Comment: 26 pages, 15 figures, 11 table

    Robust Detection of Non-overlapping Ellipses from Points with Applications to Circular Target Extraction in Images and Cylinder Detection in Point Clouds

    Full text link
    This manuscript provides a collection of new methods for the automated detection of non-overlapping ellipses from edge points. The methods introduce new developments in: (i) robust Monte Carlo-based ellipse fitting to 2-dimensional (2D) points in the presence of outliers; (ii) detection of non-overlapping ellipse from 2D edge points; and (iii) extraction of cylinder from 3D point clouds. The proposed methods were thoroughly compared with established state-of-the-art methods, using simulated and real-world datasets, through the design of four sets of original experiments. It was found that the proposed robust ellipse detection was superior to four reliable robust methods, including the popular least median of squares, in both simulated and real-world datasets. The proposed process for detecting non-overlapping ellipses achieved F-measure of 99.3% on real images, compared to F-measures of 42.4%, 65.6%, and 59.2%, obtained using the methods of Fornaciari, Patraucean, and Panagiotakis, respectively. The proposed cylinder extraction method identified all detectable mechanical pipes in two real-world point clouds, obtained under laboratory, and industrial construction site conditions. The results of this investigation show promise for the application of the proposed methods for automatic extraction of circular targets from images and pipes from point clouds

    Image Enhancement for Scanned Historical Documents in the Presence of Multiple Degradations

    Get PDF
    Historical documents are treasured sources of information but typically suffer from problems with quality and degradation. Scanned images of historical documents suffer from difficulties due to paper quality and poor image capture, producing images with low contrast, smeared ink, bleed-through and uneven illumination. This PhD thesis proposes a novel adaptative histogram matching method to remove these artefacts from scanned images of historical documents. The adaptive histogram matching is modelled to create an ideal histogram by dividing the histogram using its Otsu level and applying Gaussian distributions to each segment with iterative output refinement applied to individual images. The pre-processing techniques of contrast stretching, wiener filtering, and bilateral filtering are used before the proposed adaptive histogram matching approach to maximise the dynamic range and reduce noise. The goal is to better represent document images and improve readability and the source images for Optical Character Recognition (OCR). Unlike other enhancement methods designed for single artefacts, the proposed method enhances multiple (low-contrast, smeared-ink, bleed-through and uneven illumination). In addition to developing an algorithm for historical document enhancement, the research also contributes a new dataset of scanned historical newspapers (an annotated subset of the Europeana Newspaper - ENP – dataset) where the enhancement technique is tested, which can also be used for further research. Experimental results show that the proposed method significantly reduces background noise and improves image quality on multiple artefacts compared to other enhancement methods. Several performance criteria are utilised to evaluate the proposed method’s efficiency. These include Signal to Noise Ratio (SNR), Mean opinion score (MOS), and visual document image quality assessment (VDIQA) metric called Visual Document Image Quality Assessment Metric (VDQAM). Additional assessment criteria to measure post-processing binarization quality are also discussed with enhanced results based on the Peak signal-to-noise ratio (PSNR), negative rate metric (NRM) and F-measure.Keywords: Image Enhancement, Historical Documents, OCR, Digitisation, Adaptive histogram matchin

    Entropy in Image Analysis II

    Get PDF
    Image analysis is a fundamental task for any application where extracting information from images is required. The analysis requires highly sophisticated numerical and analytical methods, particularly for those applications in medicine, security, and other fields where the results of the processing consist of data of vital importance. This fact is evident from all the articles composing the Special Issue "Entropy in Image Analysis II", in which the authors used widely tested methods to verify their results. In the process of reading the present volume, the reader will appreciate the richness of their methods and applications, in particular for medical imaging and image security, and a remarkable cross-fertilization among the proposed research areas
    corecore