4,025 research outputs found

    Smart Nanostructures and Synthetic Quantum Systems

    Get PDF
    So far proposed quantum computers use fragile and environmentally sensitive natural quantum systems. Here we explore the notion that synthetic quantum systems suitable for quantum computation may be fabricated from smart nanostructures using topological excitations of a neural-type network that can mimic natural quantum systems. These developments are a technological application of process physics which is a semantic information theory of reality in which space and quantum phenomena are emergent.Comment: LaTex,14 pages 1 eps file. To be published in BioMEMS and Smart Nanostructures, Proceedings of SPIE Conference #4590, ed. L. B. Kis

    Synthetic Quantum Systems

    Get PDF
    So far proposed quantum computers use fragile and environmentally sensitive natural quantum systems. Here we explore the new notion that synthetic quantum systems suitable for quantum computation may be fabricated from smart nanostructures using topological excitations of a stochastic neural-type network that can mimic natural quantum systems. These developments are a technological application of process physics which is an information theory of reality in which space and quantum phenomena are emergent, and so indicates the deep origins of quantum phenomena. Analogous complex stochastic dynamical systems have recently been proposed within neurobiology to deal with the emergent complexity of biosystems, particularly the biodynamics of higher brain function. The reasons for analogous discoveries in fundamental physics and neurobiology are discussed.Comment: 16 pages, Latex, 1 eps figure fil

    Disentangling agglomeration and network externalities : a conceptual typology

    Get PDF
    Agglomeration and network externalities are fuzzy concepts. When different meanings are (un)intentionally juxtaposed in analyses of the agglomeration/network externalities-menagerie, researchers may reach inaccurate conclusions about how they interlock. Both externality types can be analytically combined, but only when one adopts a coherent approach to their conceptualization and operationalization, to which end we provide a combinatorial typology. We illustrate the typology by applying a state-of-the-art bipartite network projection detailing the presence of globalized producer services firms in cities in 2012. This leads to two one-mode graphs that can be validly interpreted as topological renderings of agglomeration and network externalities

    Neutrosophic Sets and Systems, Vol. 36, 2020

    Get PDF

    Accessibility and connectivity criteria for assessing walkability: an application in Qazvin, Iran

    Get PDF
    Distance is a recognized key determinant of walking. Pedestrians tend to choose the shortest route between two points. Shortest routes can be spatially described in terms of distances between two points or topologically described as the number of turns/directional changes between these points. This paper presents a methodology to evaluate the conditions provided by a street network to pedestrians, by using two space syntax measures. Accessibility was calculated through Angular Segment Analysis by Metric Distance (ASAMeD), a measure of street integration and choice strongly correlated with pedestrian movement pattern. Street Connectivity was calculated by using the space syntax measure of connectivity, which shows the direct connection of street nodes to each individual nodes. The streets criterion values of both approaches were normalized by using fuzzy logic linear functions. The method was applied in the city center of Qazvin, Iran. Results showed that the urban structure of Qazvin has a strong impact on the performance of the network. The old neighborhood centers widespread in the city center presented a high topological accessibility, while the most connected street are those streets crossing and surrounding the neighborhood areas. The method can be used to evaluate and improve pedestrian networks, as it can distinguish the most and least attractive streets according to the criteria used. These findings can be used to guide policies towards improving walkability and to create more walkable and sustainable cities.This research was funded by the JPI Urban Europe and FCT, grant number ENSUF/0004/2016
    corecore