126 research outputs found

    Prior context in audition informs binding and shapes simple features

    Get PDF
    A perceptual phenomenon is reported, whereby prior acoustic context has a large, rapid and long-lasting effect on a basic auditory judgement. Pairs of tones were devised to include ambiguous transitions between frequency components, such that listeners were equally likely to report an upward or downward ‘pitch’ shift between tones. We show that presenting context tones before the ambiguous pair almost fully determines the perceived direction of shift. The context effect generalizes to a wide range of temporal and spectral scales, encompassing the characteristics of most realistic auditory scenes. Magnetoencephalographic recordings show that a relative reduction in neural responsivity is correlated to the behavioural effect. Finally, a computational model reproduces behavioural results, by implementing a simple constraint of continuity for binding successive sounds in a probabilistic manner. Contextual processing, mediated by ubiquitous neural mechanisms such as adaptation, may be crucial to track complex sound sources over time

    Visual detection of time-varying signals: opposing biases and their timescales

    Full text link
    Human visual perception is a complex, dynamic and fluctuating process. In addition to the incoming visual stimulus, it is affected by many other factors including temporal context, both external and internal to the observer. In this study we investigate the dynamic properties of psychophysical responses to a continuous stream of visual near-threshold detection tasks. We manipulate the incoming signals to have temporal structures with various characteristic timescales. Responses of human observers to these signals are analyzed using tools that highlight their dynamical features as well. We find that two opposing biases shape perception, and operate over distinct timescales. Positive recency appears over short times, e.g. consecutive trials. Adaptation, entailing an increased probability of changed response, reflects trends over longer times. Analysis of psychometric curves conditioned on various temporal events reveals that the balance between the two biases can shift depending on their interplay with the temporal properties of the input signal. A simple mathematical model reproduces the experimental data in all stimulus regimes. Taken together, our results support the view that visual response fluctuations reflect complex internal dynamics, possibly related to higher cognitive processes.Comment: Number of pages: 31 Number of figures: 2

    Probabilistic models of contextual effects in Auditory Pitch Perception

    Get PDF
    Perception was recognised by Helmholtz as an inferential process whereby learned expectations about the environment combine with sensory experience to give rise to percepts. Expectations are flexible, built from past experiences over multiple time-scales. What is the nature of perceptual expectations? How are they learned? How do they affect perception? These are the questions I propose to address in this thesis. I focus on two important yet simple perceptual attributes of sounds whose perception is widely regarded as effortless and automatic : pitch and frequency. In a first study, I aim to propose a definition of pitch as the solution of a computational goal. Pitch is a fundamental and salient perceptual attribute of many behaviourally important sounds including speech and music. The effortless nature of its perception has led to the search for a direct physical correlate of pitch and for mechanisms to extract pitch from peripheral neural responses. I propose instead that pitch is the outcome of a probabilistic inference of an underlying periodicity in sounds given a learned statistical prior over naturally pitch-evoking sounds, explaining in a single model a wide range of psychophysical results. In two other psychophysical studies I study how and at what time-scales recent sensory history affects the perception of frequency shifts and pitch shifts. (1) When subjects are presented with ambiguous pitch shifts (using octave ambiguous Shepard tone pairs), I show that sensory history is used to leverage the ambiguity in a way that reflects expectations of spectro-temporal continuity of auditory scenes. (2) In delayed 2 tone frequency discrimination tasks, I explore the contraction bias : when asked to report which of two tones separated by brief silence is higher, subjects behave as though they hear the earlier tone ’contracted’ in frequency towards a combination of recently presented stimulus frequencies, and the mean of the overall distribution of tones used in the experiment. I propose that expectations - the statistical learning of the sampled stimulus distribution - are built online and combined with sensory evidence in a statistically optimal fashion. Models derived in the thesis embody the concept of perception as unconscious inference. The results support the view that even apparently primitive acoustic percepts may derive from subtle statistical inference, suggesting that such inferential processes operate at all levels across our sensory systems

    Uncertainty In serial dependence

    Get PDF

    Perception of the intensity and duration of a stimulus within a unified framework: psychophysics and underlying neuronal processing

    Get PDF
    Every sensory experience is embedded in time, and is accompanied by the perception of the passage of time. The fact that perception of the content of a sensory event and the perception of the time occupied by that event are generated in parallel raises a number of questions: Do these percepts interact with each other? Do they emerge within separate neural populations? Which neuronal mechanism underlies this divergence? In the work of my thesis I explored how the perception of the intensity of a vibrotactile stimulus, interacts with the perception of its duration, in both humans and rats. I have carried out three main studies. Chapter I works out the details of the interaction between vibration amplitude and duration, revealing a symmetric confound: perceived duration depends on stimulus speed, and perceived intensity depends on stimulus duration. Quantification of this interaction allowed us formulate a testable computational model for the generation of both percepts, which posits that a single sensory drive provides input to two distinct downstream centers, which generate the two percepts in parallel. Chapter II addresses the effect of stimulus history. Systems neuroscience has given considerable attention in recent years to the effects of preceding stimuli on the perception of the current stimulus. We now ask whether the interaction found in Study I extends to an interaction in the memory trace of recent stimuli: are the perceptual priors mixed or separate? Through psychophysical testing, we were able to show that perception of the duration and the intensity of stimuli, are biased toward the perceived features of previously presented stimuli, and not their low-level physical properties, and that separate representations of prior perceived duration and prior perceived intensity exist in the brain. Chapter III begins to look for neuronal correlates of perceived duration, through extracellular recordings in behaving rats in Dorso-Lateral Striatum (DLS), a region which receives direct input from primary somatosensory cortex and has previously shown to be involved in time perception. The delayed comparison task, differently from many common behavioral paradigms, has the advantage of dissociating the first stimulus presented to the animal from any decisional and motor processes. This makes it particularly relevant for the search for the neural basis of stimulus duration perception. Moreover, the bias of stimulus intensity on perceived time found on Study I, posits the principle that the interaction between these two features should be present in the neural population that encodes the perception of stimulus duration in a behaviourally-relevant way. Ongoing recordings are showing that the unfolding of trial time can be decoded from the striatal neural activity, but the confound of stimulus speed is not encoded by the population. This findings points toward a role of striatum in representing temporal sequences of events, while questioning its involvement in encoding the perception of stimulus duration

    Multistability and metastability: understanding dynamic coordination in the brain

    Get PDF
    Multistable coordination dynamics exists at many levels, from multifunctional neural circuits in vertebrates and invertebrates to large-scale neural circuitry in humans. Moreover, multistability spans (at least) the domains of action and perception, and has been found to place constraints upon, even dictating the nature of, intentional change and the skill-learning process. This paper reviews some of the key evidence for multistability in the aforementioned areas, and illustrates how it has been measured, modelled and theoretically understood. It then suggests how multistability—when combined with essential aspects of coordination dynamics such as instability, transitions and (especially) metastability—provides a platform for understanding coupling and the creative dynamics of complex goal-directed systems, including the brain and the brain–behaviour relation

    Timed trajectory generation using dynamical systems : application to a puma arm

    Get PDF
    We present an attractor based dynamics that autonomously generates trajectories with stable timing (limit cycle solutions), stably adapted to changing online sensory information. Autonomous differential equations are used to formulate a dynamical layer with either stable fixed points or a stable limit cycle. A neural competitive dynamics switches between these two regimes according to sensorial context and logical conditions. The corresponding movement states are then converted by simple coordinate transformations and an inverse kinematics controller into spatial positions of a robot arm. Movement initiation and termination is entirely sensor driven. In this article, the dynamic architecture was changed in order to cope with unreliable sensor information by including this information in the vector field. We apply this architecture to generate timed trajectories for a Puma arm which must catch a moving ball before it falls over a table, and return to a reference position thereafter. Sensory information is provided by a camera mounted on the ceiling over the robot. A flexible behavior is achieved. Flexibility means that if the sensorial context changes such that the previously generated sequence is no longer adequate, a new sequence of behaviors, depending on the point at which the changed occurred and adequate to the current situation emerges. The evaluation results illustrate the stability and flexibility properties of the dynamical architecture as well as the robustness of the decision-making mechanism implemented

    Visual attention deficits in schizophrenia can arise from inhibitory dysfunction in thalamus or cortex

    Full text link
    Schizophrenia is associated with diverse cognitive deficits, including disorders of attention-related oculomotor behavior. At the structural level, schizophrenia is associated with abnormal inhibitory control in the circuit linking cortex and thalamus. We developed a spiking neural network model that demonstrates how dysfunctional inhibition can degrade attentive gaze control. Our model revealed that perturbations of two functionally distinct classes of cortical inhibitory neurons, or of the inhibitory thalamic reticular nucleus, disrupted processing vital for sustained attention to a stimulus, leading to distractibility. Because perturbation at each circuit node led to comparable but qualitatively distinct disruptions in attentive tracking or fixation, our findings support the search for new eye movement metrics that may index distinct underlying neural defects. Moreover, because the cortico-thalamic circuit is a common motif across sensory, association, and motor systems, the model and extensions can be broadly applied to study normal function and the neural bases of other cognitive deficits in schizophrenia.R01 MH057414 - NIMH NIH HHS; R01 MH101209 - NIMH NIH HHS; R01 NS024760 - NINDS NIH HHSPublished versio
    corecore