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Abstract

Perception was recognised by Helmholtz as an inferential process whereby learned

expectations about the environment combine with sensory experience to give rise

to percepts. Expectations are flexible, built from past experiences over multiple

time-scales. What is the nature of perceptual expectations? How are they learned?

How do they affect perception? These are the questions I propose to address in this

thesis. I focus on two important yet simple perceptual attributes of sounds whose

perception is widely regarded as effortless and automatic : pitch and frequency. In

a first study, I aim to propose a definition of pitch as the solution of a computational

goal. Pitch is a fundamental and salient perceptual attribute of many behaviourally

important sounds including speech and music. The effortless nature of its perception

has led to the search for a direct physical correlate of pitch and for mechanisms to

extract pitch from peripheral neural responses. I propose instead that pitch is the

outcome of a probabilistic inference of an underlying periodicity in sounds given a

learned statistical prior over naturally pitch-evoking sounds, explaining in a single

model a wide range of psychophysical results.

In two other psychophysical studies I study how and at what time-scales re-

cent sensory history affects the perception of frequency shifts and pitch shifts. (1)

When subjects are presented with ambiguous pitch shifts (using octave ambiguous

Shepard tone pairs), I show that sensory history is used to leverage the ambiguity in

a way that reflects expectations of spectro-temporal continuity of auditory scenes.

(2) In delayed 2 tone frequency discrimination tasks, I explore the contraction bias

: when asked to report which of two tones separated by brief silence is higher, sub-

jects behave as though they hear the earlier tone ’contracted’ in frequency towards a
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combination of recently presented stimulus frequencies, and the mean of the overall

distribution of tones used in the experiment. I propose that expectations - the statis-

tical learning of the sampled stimulus distribution - are built online and combined

with sensory evidence in a statistically optimal fashion.

Models derived in the thesis embody the concept of perception as unconscious

inference. The results support the view that even apparently primitive acoustic per-

cepts may derive from subtle statistical inference, suggesting that such inferential

processes operate at all levels across our sensory systems.
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Chapter 1

Introduction: Bayesian inference,

theories of perception and contextual

effects

1.1 Bayesian inference

A cornerstone of this thesis is the use of the framework of Bayesian inference as a

scientific model of human perception and to derive and develop tools for statistical

data analysis.

Bayesian inference is a formal way of reasoning under uncertainty. Consider

a ’prior’ belief over some unknown variable θ taking the form of a probability

distribution over its possible values p(θ) and a statistical model of how θ relates to

observables x in the form of a conditional probability p(x|θ). Bayesian inference

describe the derivation of the posterior probability on θ as new data x becomes

available following Bayes’ rule p(θ |x) ∝ p(x|θ) p(θ). This posterior constitutes

an ’updated’ belief combining the ’evidence’ provided by the new dataset and the

prior.

A simple example to illustrate the problem setting and the process of inference

is the following. Imagine a biased coin, that lands heads with an unknown probabil-

ity θ . Now you observe the outcomes of tosses and aim to infer θ . A first source of

uncertainty in the problem lies in the inherently stochastic process of coin tossing
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itself: Outcomes of tosses (the observables) are well described through a statistical

model relating them to θ : p(x = heads|θ) = θ . In a Bayesian approach, one starts

with a prior p(θ), a second source of uncertainty. Updating of beliefs follows as

described.

In this framework, we will be interested in the computation of two objects: pos-

terior density p(θ |x) ∝ p(x|θ) p(θ) providing the full updated belief, and marginal

likelihood p(x) =
´

dθ p(x|θ) p(θ) or how the model explains the data. We will

use marginal likelihood to compare possible a priori distribution p(θ ;λ ) when they

are themselves indexed by hyperparameters λ .

1.2 Theories of perception
Historically, thinking about perception has focused on two separate important stages

serving different computational goals, an encoding stage and the interpretation of

the encoded information. Two key theories of perception have helped to understand

these two stages: efficient coding [2, 3] and perception as inference [4, 5, 6]. Both

theories propose that perception is highly contextual, with environment statistics

framing either the encoding of sensory information or statistical priors used during

inference.

No sensory stimulus is an island. Contextual effects (CE) are pervasive in

perception whether temporal, as when stimuli presented earlier affect the current

percept, or instantaneous, as when a variation in ’perceptual dimensions’ other than

that attended to, leads to perceptual biases. Both behavioral consequences and neu-

ral correlates of CEs have been the focus of investigation.

In this section, I review the two main theories of perception and their success

in explaining neural coding and behavior.

1.2.1 Bayesian theories of perception

The idea of perception as inference dates back to Helmholtz [4]. He proposed that

perception reflects a process of unconscious inference about physical quantities of

interest in the environment from imperfect, incomplete or ambiguous incoming sen-

sory signals.
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Bayesian theories of perception focus on explaining behavior in perceptual task

by defining the task at hand (the inference) and specifying the optimal solution to

the task using in the language of probability theory. Indeed, since sensory transduc-

tion is inherently stochastic and the dynamics of the world are complex and often

uncertain, the optimal inference is a probabilistic one and requires knowledge about

their assumed statistical regularities.

A guiding principle of such theories is optimality. Human performance in

perceptual tasks is compared to the optimal performance achievable in these tasks,

with some degrees of freedom in the definition of the optimal performance used to

achieve better fit (see [7] for a philosophical and methodological discussion).

The successes of this line of investigation lies in the fact that human behavior

has been repeatedly shown to be close to optimal.

For example such theories have been successful in accounting for the role of

context in resolving ambiguous stimuli [8, 9], for human cue combination [10],

for the use of sensory uncertainty in sensory motor learning [11], and for a wide

range of sensory illusions, understood as a mismatch between sensory evidence and

expectations [12].

1.2.1.1 Perceptual bias towards the prior

Formally, given a statistical generative model of sensation x conditional on an un-

known stimulus y : p(x|y) and a prior assumption on this stimulus p(y), Bayesian

theories describe perception as an outcome of the posterior computation p(y|x) ∝

p(x|y) p(y), for example the computation of its mean or median when subjects are

asked to report the value of y, and the posterior variance when asked to report their

degree of confidence in their judgement.

If the prior was non-informative p(y) ∝ 1, the posterior would be proportional

to the likelihood. When informative it generally leads to attractive perceptual bi-

ases: the posterior is ’shifted’ toward the prior a sense that, according to some

metric d between distributions, the distance between the posterior and the prior is

reduced compared to the distance from the normalized likelihood and the prior:

d(prior,posterior)< d(prior, likelihood). Different metrics can be used such as dis-
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tance in means, medians or modes (when unimodal), or the Kullback-Leibler diver-

gence. For distributions in exponential family and the KL divergence as a metric,

one can prove that the posterior is always shifted to the prior (although it might not

be the case for the same distributions but using another metric). Examples of distri-

butions and metrics where repulsion rather than attraction is obtained as a result of

posterior inference are given in [13].

The Gaussian case is a stereotypical example. Assuming a generative model

for x where additive Gaussian noise with variance σ2
l corrupts the stimulus y :

p(x|y) ∝ N
(
x;y,σ2

l

)
and a Gaussian prior with variance σ2

p on the stimulus value:

p(y) ∝ N
(
y; µp,σ

2
p
)

leads to a Gaussian posterior p(y|x) = N
(
xi; µpost ,σ

2
post
)

with reduced uncertainty σ2
post =

(
σ
−2
l +σ−2

p
)−1

< min
(
σ2

l ,σ
2
p
)

and precision

weighted mean µpost = σ2
post

(
x

σ2
l
+

µp
σ2

p

)
. For univariate Gaussian distributions, the

precision refers to the inverse of the variance.

1.2.1.2 Sensory Cue Combination

A success of Bayesian theories of perception is their ability to describe how hu-

mans combine different sources of information. In a series of work summarized

in [10], it was shown that subject’s behavior in tasks involving the combination of

mulitple sensory cues could be well described as an inference process sensitive to

the reliability of the sources to be combined. Although alternative explanations ex-

ists (for example [14]), ideal observer approaches have been useful in quantitatively

describing this process.

Within this framework, a possible formulation of a cue combination task is the

following: given a statistical generative model of two sensations x1,x2 conditionally

independent given a shared unknown stimulus y: [p(x1,x2|y) = p(x1|y) p(x2|y)]
and an uninformative prior assumption on this stimulus [p(y) ∝ 1.], Bayes rules

leads to a posterior density on the stimulus p(y|x1,x2) ∝ p(x1|y) p(x2|y). As-

suming a Gaussian uncertainty for both sources p(xi|y) ∝ N
(
xi;y,σ2

i
)

leads to

a Gaussian posterior p(y|x1,x2) = N
(
xi; µpost ,σ

2
post
)

with reduced uncertainty

σ2
post =

(
σ
−2
1 +σ

−2
2
)−1

< min
(
σ2

1 ,σ
2
2
)

and precision weighted mean µpost =

σ2
post

(
x1
σ2

1
+ x2

σ2
2

)
.



1.2. Theories of perception 18

Another interesting case of cue combination is when two underlying perceptual

features y1,y2 are jointly assumed to give rise to a sensation x through a generative

model p(x|y1,y2) and when these are assumed to be coupled with a joint density

p(y1,y2). The joint posterior is computed as p(y1,y2|x) ∝ p(x|y1,y2) p(y1,y2). If

the information provided by x about the first dimension was ambiguous assuming

no coupling in the prior, the coupling may help to resolve this ambiguity. Hehrmann

and Sahani explained timbral induced biases in the perception of ambiguous pitch

using such a model where underlying pitch and timbre features parameterize a gen-

erative model of pitch evoking sounds, and priors derived from natural sound statis-

tics encode a natural pitch-brightness correlation [15].

1.2.1.3 Statistical learning in Bayesian theories of perception

The Bayesian framework for perception relies on the ability to learn statistical reg-

ularities of the environment. Our ability to acquire knowledge about the distri-

bution of stimuli has been demonstrated repeatedly [16]. Several studies suggest

that subjects may behave optimally: their priors match the task or natural statistics

[17, 18, 19]. Short term distribution learning has also been reported. Chalk et al.

[20] showed that expectations of simple stimulus features, e.g. direction of motion,

can be developed implicitly through a fast statistical learning procedure. Moreover,

it has been shown that prior distributions that are more complex than a simple Gaus-

sian, such as skewed or bimodal, can be learned, in a relatively short amount of time

[21, 11, 22].

1.2.2 Efficient Coding hypothesis

The efficient coding hypothesis provides a theoretical framework to understand the

encoding stage of perception. It proposes that sensory systems have evolved to

maximize the information transmitted to the brain about the environment, subject

to the limitations of the resources available [2, 3]. Formally, denoting by r (s) the

possibly noisy encoding of a stimulus s whose natural statistics are p(s), a measure

of its efficiency is the mutual information I (s,r (s)) which quantifies in expectation

the transmitted information. Optimal codes are codes that maximize this objective
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[23].

Optimal encoding theories have been helpful to understand many aspects of

neural encoding. In the visual domain, it can explain codes in the retina [24] and

the linear part of the structure of codes in early cortex [25]. In the auditory system

it has been used to explain encoding in thalamic relays [26] and in early auditory

cortical areas [27].

The efficient coding hypothesis makes relatively few predictions at a behav-

ioral level. Apart from a few recent attempts [13, 28], it generally fails to account

from most perceptual biases reported, which I review in the next section.

1.3 Contextual effects in perception
Sensory experience affects perception on timescales ranging from a few millisec-

onds to a life-time. Here, I focus on contextual effects on short timescales from

a few milliseconds to tens of minutes, which includes the typical duration of psy-

chophysical experiments or the time it takes to read a newspaper article. Sensory

experience has two main effects on perception. First, it can enhance perceptual per-

formance, as when it increases accuracy in a detection task [29]. Second, it can

lead to perceptual biases in the sense that it shifts the percept reported from what it

would have been had there been no context.

1.3.1 Attractive and Constrastive biases

In this section, I focus on on temporal contextual effects which describe the in-

fluence of past stimuli on current perception. In psychophysics, contextual effects

are frequently classified according to whether the observed perceptual bias is at-

tractive or contrastive. Contextual effects are labelled attractive when perception

seems biased towards previous percepts or stimuli, as when a brief motion stimulus

biases a subsequent ambiguous stimulus towards the same perceived direction of

motion [30]. On the other hand, temporal contextual effects are labelled contrastive

when perception is biased away from recent sensory history, as when the prolonged

presentation of a motion stimulus in one direction creates the illusory perception

of motion in the opposite direction for a subsequent stationary stimulus [31]. This
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classification is not always obvious and some contextual effects might be both, as in

the case of the biasing of ambiguous visual-motion [30] where it has been observed

that attractive effects occurred for short time scales, whereas contrastive effects oc-

curred for longer time scales.

1.3.2 Opposing explanations

These opposite effects have been explained based on different stages of perception.

Attractive effects are often explained in the normative Bayesian framework as the

biasing effect of prior information in probabilistic inference.

Prior information in this framework is specified as a distribution over the pos-

sible configurations of objects assumed to exist in the world. In probabilistic in-

ference, information from the senses leads to an update of this distribution over

configurations. The result of this update is an ’a posteriori’ distribution that of-

ten favors ’a priori’ likely configurations over less-likely ones even if both explain

sensation equally well, hence the bias. A concrete example is given in 1.2.1.1.

These biases arise as a consequence of a computation whose other conse-

quences are to reduce perceptual uncertainty (the range possible configurations can

only shrink), to disambiguate ambiguous stimuli (by favoring some configuration

over others) and to help stabilize perception [32].

Contrastive effects on the other hand are often described as the result of a

mechanistic adaptation or habituation of the encoding stage, with a fixed decoding

stage [33, 34] even in attempts to frame adaptation in the Bayesian framework [35].

Computationally, contrastive effects are thought to reflect the task of maximizing

information transfer [36]. A recent attempt to merge efficient coding and Bayesian

theories of perception in a single theory explains the contrastive and attractive effect

of long term statistics in visual tasks [13]. This theory however does not explain

how and on what timescales these statistics are learned.

1.3.3 The case of auditory low-level perception

In the auditory modality, contrastive context effects have been reported for basic

low-level auditory features such as loudness or pitch. The subjective location of a
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sound can be shifted away from that of a preceding context [37, 38]. The prolonged

presentation of amplitude-modulation can elevate subsequent modulation detection

thresholds [39]. Adaptation to short frequency glides affects subsequent temporal

order judgement of brief tone pairs [40]. The prolonged presentation of frequency-

shifts in spectral peaks or troughs produces a negative “afterimage” on the spectral

motion of subsequent similar sounds [41]. More recently, it has been demonstrated

that prolonged exposure was not always necessary: even very brief contexts were

able to shift away the perception of spectral motion [42, 43].

There are comparatively fewer instances of attractive contextual effects in au-

ditory perception. For frequency and pitch, a regression to the mean (or contraction

bias, reviewed in more detail in Chapter 5) has been reported for successive pitch

judgements [44]. When ambiguity is added to pitch judgements, hysteresis has

been observed, one of the hallmarks of attractive effects [45, 46]. In auditory scene

analysis, finally, the perceptual organization of ambiguous tone sequences is biased

towards prior percepts [9]. Other contextual effects in auditory scene analysis may

also be categorized as attractive, such as when a component tone is captured by a

preceding context [47].

1.4 Modelling contextual effects in Perception: three

case studies
In the following chapters of this thesis, I present models and interpretations of three

sets of psychophysical studies involving 2 alternative forced choice (2AFC) dis-

crimination tasks. In all studies, subjects’ responses reveal strong attractive biases.

Two different kinds of stimuli are used to reveal the bias.

In chapter 3, extending a model of human pitch perception by Hehrmann and

Sahani [15], a psychophysical experiment was run in which subjects had to judge

the direction of pitch shift between stimuli. The shift was designed to be ambiguous.

In this study instantaneous timbral context had a biasing effect which we model as

reflecting learned timbre-pitch statistical dependence observed in natural sounds.

In chapter 4, I report a second study by Chambers et al [48] in which context
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also disambiguates an ambiguous pitch shift percept. Subjects had to report the

direction of a half octave pitch shift, clear in magnitude (high signal to noise ratio)

but ambiguous in direction. A model of pre-perceptual tracking of auditory scene

is proposed to account for the reported effect.

In chapter 5, I report a third study by Lieder et al [49], in which subjects

have to judge whether a frequency shift between a pair of pure tones is upward

or downward. Stimuli are not ambiguous and contextual effects are most salient

in more difficult trials (low signal to noise ratio). I analyzed the ’contraction bias’

revealed by this task and proposed a model to account for the biasing effect of

sensory history at multiple time-scales.

In chapter 2, prior to the presentation of these psychophysical studies and their

modelling, I describe Gaussian Processes and recent technical innovations in their

use for non-linear regression which I extend and use across multiple chapters.

1.5 Modelling methodology

David Marr distinguishes three complementary levels at which information pro-

cessing systems (such as the visual or auditory system) can be described and stud-

ied [50]: (1) the computational level is primarily concerned with identifying the

goal or purpose of the system under study, and the strategy employed to achieve it.

(2) the algorithmic and representational level focuses on studying what algorithms

underlie the system’s input-output transformation in order to achieve its goal, and

the nature of their internal representation. (3) the implementation level explains the

mechanisms by which these algorithms and representation are realised in the actual,

physical system under study. In this thesis, I report behavioral phenomena about the

perception of basic auditory features whose perception is effortless and automatic:

pitch and frequency shifts. Most modelling approaches to the perception of these

features are mechanistic models and start with the assumption that correlates of per-

cepts can readily be computed from peripheral neural responses at early stages of

the auditory periphery. This tendency to favor explanations at an implementational

level is not well supported by physiological evidence. For example, a physiological
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correlate of the percept of pitch is yet to be found. In all my three projects, I follow

computational principles instead: I developed computational models to account for

these psychophysical phenomena all of which implement the hypothesis of percep-

tion as unconscious Bayesian inference. A common feature of these models is the

assumption of a fixed noisy log-linear encoding of the frequency content of sounds

as displayed in early auditory periphery [51] and as predicted by an efficient encod-

ing based on natural sounds [27].

1.6 Summary of publications
Most of the work reported in this thesis has been published in international con-

ferences and journals. My technical work on sparse additive Gaussian Process re-

gression described in chapter 2 was presented and published in the proceedings

of the IEEE International Workshop on Machine Learning for Signal Processing

[52]. Its application to neural data analysis is to was presented at the 2017 edition

of COSYNE [53]. My modelling of how context disambiguates the perception of

ambiguous pitch shifts described in chapter 4 was presented at the 2016 edition of

COSYNE [54] and was published in the journal Nature Communication [48]. My

modelling of how context biases delayed 2 tones discrimination tasks described in

chapter 5 was presented at the 2017 edition of COSYNE [49]. My extension of

the model of human pitch perception developed by Hehrmann et al. described in

chapter 3 was presented at the 2014 edition of COSYNE [55].



Chapter 2

Gaussian Processes and approximate

inference

2.1 Introduction
A cornerstone of this thesis is the use of the framework of Bayesian inference as a

scientific model of human perception and to derive and develop tools for statistical

data analysis. In both cases, the need to describe rich, flexible and structured prior

assumptions on functions has led me to use Gaussian Processes [56]. Inference

using Gaussian Processes is often hard and prohibitively expensive when applied to

large datasets and one needs to resort to approximations.

This chapter is organized as follows: I first review Gaussian Processes and

their application to regression. I carry on describing approximations allowing them

to scale to problems involving large datasets. Finally I present the problem of ad-

ditive regression using Gaussian Processes and propose a new algorithm to solve it

efficiently. Along the way, I describe applications of this algorithm and its use in

this thesis.

2.2 Gaussian Processes

2.2.1 Definition

Gaussian Processes (GPs) are infinite collections of random variables, any finite

subset of which follows a multivariate Gaussian distribution. They are defined by
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a mean function m and covariance function k. A draw from a GP defined on a

index set X is a function on the domain X . Given a list of points X ∈X N and a

function draw f ∼ GP(m,k), the vector of function evaluations f(X) is a associated

multivariate normal random variable such that f(X) ∼N (m(X),K(X ,X)), where

m is a vector of mean function evaluations and K is a matrix of covariance function

values.

In this thesis, I will focus on the case m = 0 leaving the GP fully specified

by the covariance function only. Also, in all applications, the input space is the

one-dimensional real line (X = R)

2.2.2 Covariance functions

The covariance function (or kernel) of a GP defines the covariance between all

pairs of function evaluations on X . This covariance function is symmetric and

positive-definite and captures a notion of similarity or nearness between pairs of

function evaluations. For a pair of points x,x′ ∈X , and f ∼GP(0,k) the covariance

between the two associated function evaluations is cov( f (x), f (x′)) = k(x,x′). Sums

of kernels (with positive weights) are kernels and so are finite products of kernels;

this will be important for constructing new kernels from pre-existing ones in the

following sections.

A covariance function k(x,x′) is said to be stationary if it is a function of τ =

x− x′, that is if is invariant to translations in the input space X . The stationary

covariances with domain R that we will consider have a spectral density S(s) defined

as its Fourier transform: k(τ)=F−1{S}(τ)=
´
R dsS(s)e2πisτ . The spectral density

is the expected power spectrum, which is a familiar object in sound analysis.

In the next sections, I present some kernels capturing the prior assumptions

made at various points in this thesis: smoothness and local periodicity.

2.2.2.1 Smoothness

The Exponential Quadratic (EQ) kernel also called the Gaussian kernel has the

form kEQ(τ) = exp
(
− τ2

2l2

)
. It is parameterized by l, the characteristic length-

scale. Samples from a GP with a EQ kernel are smooth on a scale controlled by
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l. This can be seen from the spectral density decaying with frequency as SEQ(s) ∝

exp
(
−2π2l2s2). The limit of l→ 0, leads to the noise kernel knoise(τ) = δ (τ = 0).

The other limit l→ ∞ corresponds to the constant kernel kconst(τ) ∝ 1 (samples of

which are constant functions).

2.2.2.2 Periodicity

A function f with period Ω is such that ∀t, f (t +Ω) = f (t). A stationary kernel k

defining a periodic GP must itself be periodic. This imposes equality (correlation

equal to 1) between function evaluations at period spaced input points. A simple

periodic kernel is the cosine kcos(τ) = cos(2πτµ). Its spectral density is sparse and

given by Scos(s) ∝ δ (s =±µ). Samples from an associated GP are themselves co-

sine functions (with random amplitude and phase). Finite sums of harmonically re-

lated cosine kernels khar (τ) = ∑J
j=1 w j cos(2πτµ j) ,w j > 0 are periodic with spec-

tral density Shar (s) ∝ ∑J
j=1 w jδ (s =± jµ) . A classical periodic kernel inspired by

the EQ kernel is kper (τ) = exp
(
−2 sin2(πτµ)

γ2

)
. It has no closed form spectral den-

sity, although γ controls the smoothness in a similar manner as l in the EQ kernel:

a EQ kernel with parameter l and a periodic kernel with parameter γ ≈ πlµ have

equivalent smoothnesses.

2.2.2.3 Almost periodic kernels

Relaxing the assumption of periodicity means relaxing the equality constraint of

period-spaced function evaluations. Starting from a periodic kernel k, one may

add noise to its sampled functions. In the case of additive independent Gaussian

noise with mean 0 and variance σ2, this corresponds to consider the kernel k̃ (τ) =

k (τ)+σ2δ (τ = 0). Another way of enforcing a more local periodicity is to weaken

the correlation between function evaluation in a distance dependent manner, e.g.

using a decaying kernel h to build k̃ (τ) = k (τ)h(τ).

2.3 Gaussian Processes for regression
In this section I briefly discuss the problem of Gaussian Process Regression and

present sparse approximations to the problem, with a focus on the sparse variational

approximation introduced by [57].
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2.3.1 Setting

In GP regression, consider a data set D = {xi,yi}i={1..N}, an observation model

yi| f (xi), and a GP prior on f . The aim is to compute the posterior p(f|D) ∝

p(f) p(y|f) and the marginal likelihood p(y) =
´

df p(y, f). Both the prior GP and

the likelihood might have unknown parameters which may be selected by maximiz-

ing the marginal likelihood.

Two main difficulties arise when trying to compute the posterior. First,

even in the simple case of conjugate likelihood (or Gaussian observation model)

yi = f (xi) + εi, εi
iid∼ N

(
0,σ2), where the marginal likelihood has an analytic

form: p(y|D) = N
(
y|0,Knn +σ2I

)
with Knn = K(X ,X), computations require

the expensive inversion of an N ×N matrix. Second, when the likelihood is not

conjugate, posterior estimates are not available in closed form and must be approx-

imated, for example by expectation propagation [58] or variational inference [59].

Such approximations do not scale well with N.

2.3.2 Sparse approximations

Sparse approximations represent an approach for overcoming the aforementioned

difficulties with GP regression, providing an attractive framework in settings with

large datasets or non-conjugate likelihoods. A full review of sparse approximations

is beyond the scope of this thesis, see [60, 61] for a review. Briefly, these approx-

imations explicitly represent m additional function evaluations of a GP u associ-

ated to pseudo-inputs Z ∈X m forming a prior p
(

f 6=u,u
)
, where f 6=u represents

the function evaluations on X \Z, and modify this extended prior by introducing

conditional independencies, for example p̃(f,u) = ∏i p( fi|u)p(u) 6= p(f,u). Fi-

nally u are treated as parameters yielding a new parametric prior on f. Denoting

Kmm = K(Z,Z), Knm = K(X ,Z) and Kmn = K(Z,X), this intuitively induces a low

rank form to the matrix Knn = KnmK−1
mmKmn, with the rank governed by the size of

the inducing set. An inconvenience of such approaches is that the prior is changed.

Another approach is to treat the inducing points as variational parameters in a

variational framework by assuming the following form to approximate the posterior

p
(

f 6=u,u|y
)
≈ p

(
f 6=u|u

)
q(u). This has been proposed by [57] for the conjugate
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case and extended to the non-conjugate case by [62]. This approximation does not

change the prior model and has appealing theoretical justifications [63].

In this variational framework, a lower bound on the log marginal likelihood is

achieved using Jensen’s inequality:

log p(y) ≥ Eq(u,f)

[
log

p(y|u, f) p(f|u) p(u)
q(u, f)

]
≥ Ep(f|u)q(u)

[
log

p(y|f) p(f|u) p(u)
p(f|u)q(u)

]
≥ Ep(f|u)q(u)

[
log

p(y|f) p(u)
q(u)

]
≥ Eq(f) [log p(y|f)]+Eq(u)

[
log

p(u)
q(u)

]
︸ ︷︷ ︸
−KL(q(u)||p(u))

= L (q) (2.1)

where q(f) =
´

duq(u) p(f|u), and KL(q||p) is the Kullback-Leibler diver-

gence between densities q and p.

The left hand term of the bound is the expected log likelihood under the

approximated posterior. The right hand term is the negative of a measure of

nearness between the prior and the posterior distribution on the function eval-

uation at the inducing points. The density q∗(u) maximizing this bound is

q∗(u) ∝ p(u)exp
{
Ep(f|u) log p(y|f)

}
. It is intractable for most (non-conjugate)

likelihoods. A further approximation followed by [62] is to restrict q to be a

multivariate Gaussian distribution q(u) = N (u|m,S) and to optimize for vari-

ational parameters m,S. This leads q(f) to be also Gaussian: denoting A =

KnmK−1
mm, we have f|u ∼ N

(
f;Au,Knn−AKmmAT) so q(f) = Eq(u) [p(f|U)] =

N
(
f;Am,Knn +A(S−Kmm)AT). When observations are assumed to be inde-

pendent, this enables fast and accurate approximations to the expected likelihood

(left hand term of the bound in Equation 2.1) using Gaussian Quadrature methods.

2.3.3 Application: inferring pitch from auditory nerve activity.

This example will be described in depth in Chapter 3. In our model of human pitch

perception, we have a generative model of auditory nerve activity A given a sound

waveform x. This provides us with a likelihood function p(A|x). We use a GP prior

for the sound p(x;Ω) with Ω the period as a hyperparameter. This is a prototypical
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regression setting with a rather complex likelihood. We are interested in finding

the period maximizing the marginal likelihood p(A;Ω). Instead, we maximize the

lower bound on log p(A;Ω) using the described sparse variational approximation.

2.4 Additive regression

In this section, I present my work published in [52] where I extend the sparse

variational approach to a class of regression models involving multiple latent un-

known functions f (1), ..., f (D) on D different dimensions X (1), ...,X (D), but where

observations are conditionally independent given the sum of the functions, i.e

p
(

y| f (1), ..., f (D)
)
= p

(
y|∑d f (d)

)
. The term ∑d f (d) constitutes an additive pre-

dictor. This class of model is that of Generalized Additive Models (GAMs) and

was introduced in [64] as a non parametric additive extension to Generalized Lin-

ear Models (GLM). The key motivation for the additivity is interpretability at the

cost of generality (dimensions do not interact in the additive predictor). Another

motivation is to avoid the curse of dimensionality: regression in higher dimensions

requires increasingly more data or increasingly strong assumptions leading to poor

or biased estimates.

2.4.1 Additive Gaussian Process regression

I now consider the case where X = RD for D > 1, and write x = (x(1), ...,x(D)) for

x∈X . In the GP regression framework, using additive kernels [65, 66] imposes this

desired structure to the prior. For example if k(x,x′)=∑d k(d)(x(d),x′(d)), the associ-

ated GP constrains the prior function to have additive structure f (x) = ∑d f (d)(x(d))

where f (d) ∼GP(0,k(d)). A first approach to doing additive GP regression could be

to carry out a classical single GP regression under additive kernel assumption and

to use a sparse approximation.

In the variational inducing point framework, the posterior is a low dimen-

sional process given by p(f|y) ≈ q(f) =
´

du p(f|u)q(u). In the case where
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q(u) = N (m,S) , the posterior is a GP with non additive covariance structure

q(f) = N (µµµ,ΣΣΣ)

µµµ = KnmK−1
mmm

ΣΣΣ = Knn +KnmK−1
mm
[
SK−1

mm− I
]

Kmn

Recovering the marginals requires the extra step of computing the joint mul-

tivariate posterior GP over the joint q
(

f(1), ..., f(d)
)
= q(f)

p(f) p
(

f(1), ..., f(d)
)

and

marginalizing. Denoting q
(

f(1), ..., f(d)
)
=N (v,V) and indexing dimensions such

that q(f(d)) = N (v(d),V(d)) and cov(f(d), f(d′)) = V(d,d′), we have

V(d,d′) = K(d)−K(d)K̃−1K(d′)

v(d) =
(

K(d)−K(d)K̃−1Ksum

)
σ
−2y

where Ksum = ∑D
d=1 K(d) and K̃ =

[
ΣΣΣ−1−K−1

sum
]−1

+Ksum.

This step is needed because the inducing points do not readily provide the in-

formation to reconstruct the individual components (they were indeed optimized to

reconstruct the summed GP). One cannot compute this posterior joint for individual

input points as this would split the mean and variance according to the relative prior

variances of each underlying function at that point, rather than correctly taking into

account the rest of both the prior and posterior GP structure. Instead the joint must

be constructed over a large set of points (ideally the full initial dataset) and those

data points should not share any coordinate. This final step is computationally ex-

pensive

2.4.2 Sparse approximation

Here I propose to extend the variational inducing point framework for additive GP

models. The resulting algorithm was published in [52] and was used for statistical

data analysis in chapter 5.

My extension involves directly constructing a parametric approximation to

each GP. I do so by assuming a factorized approximation to the joint posterior

p(f(1), ..., f(D),u(1), ...,u(D)|Y ) ≈ ∏d q(u(d))p(f(d)|u(d)). A similar mean-field ap-

proach has been proposed independently by Saul et al [67] to allow the non-linear
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combination of an arbitrary collection of GPs. However, they did not recognize the

computational advantage induced by the additive structure.

The proposed approach provides some advantages over the previous studies.

Each GP is conditioned on its own set of inducing points, allowing one to use fewer

inducing points for less complex or lower-dimensional predictors (linear functions

are well approximated by using linear kernels with two inducing points).

Inducing variables are readily interpretable as conditional variables for the pre-

diction of each function. This comes however at the cost of losing the correlation

structure across functions. Here, I use a mean field approximation that systemati-

cally underestimates the covariance of the individual components. Linear response

methods may however be used to recover more complete estimates of the full co-

variance structure [68].

To simplify notation, I will write F = [f(1), ..., f(D)] and U = [u(1), ...,u(D)]. I

will consider an augmented model p(F,U) = ∏d p(f(d),u(d)) where u(d) are asso-

ciated to pseudo-input Z(d).

I will consider an approximation to the posterior of the form p(F,U|y) ≈
∏d p(f(d)|u(d))q(u(d)).

The Titsias assumption [57] applied to the additive model leads to a lower

bound on the marginal log likelihood

log p(y) ≥ log Ep(F|U)q(U)

[
p(y|F,U)p(F|U)p(U)

p(F|U)q(U)

]
≥ Ep(F|U)q(U) [log p(y|F)]−KL(q)

≥ Eq(ρ) [log p(y|ρ)]−KL(q) (2.2)

with ρ =∑d f (d), the additive predictor and KL(q)=∑d KL
(

q(u(d))||p(u(d))
)

.

The predictive posterior is q(ρ) = E∏d q(u(d)) [p(ρ|U)].

2.4.2.1 Parametric assumptions for tractable bound

The posterior over the function evaluations at the inducing points u(d) are approxi-

mated as multivariate Gaussian distributions: q(u(d)) = N (u(d)|m(d),S(d))

This leads q(ρi) to take a univariate Gaussian form and enables fast and ac-
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curate approximations to the expectations (left hand term of the bound in Equation

2.2) using Gaussian Quadrature methods. Writing A(d) = K(d)
nm K(d)−1

mm , I have

f(d)|u(d) ∼N
(

f(d);A(d)u(d),K(d)
nn −A(d)K(d)

mmA(d)T
)

ρρρ|U = ∑
d

f(d)|U

∼N

(
ρρρ;∑

d
A(d)u(d),∑

d
K(d)

nn −A(d)K(d)
mmA(d)T

)
so

q(ρρρ) = E∏d q(u(d)) [p(ρρρ|U)]

= N

(
ρρρ;∑µ

(d)
add,∑

d
Σ(d)

add

)
With

µµµ
(d)
add = A(d)m(d)

ΣΣΣ(d)
add = K(d)

nn +A(d)
(

S(d)−Kmm

)
A(d)T

2.4.3 Applications to psychophysical data analysis

In Chapter 5, we use a non-linear extension of classical probit regression models

used to model subject performance in discrimination tasks. Subjects were asked

to report which of 2 pure tones presented successively was higher in frequency, in

a task consisting of hundreds of such comparisons. Denoting by δ the frequency

difference between the first and second tone in a trial, a classical model of sub-

ject responses is p(′ f1 higher′|δ ) = φ(αδ ), where α is a free parameter that can be

related to the subject’s precision. In such models, only the two tones to be discrim-

inated play a role in the decision (through their difference δ ). Instead I aimed to

study the influence of stimuli presented in past trials on subjects’ decisions. I con-

structed covariates from past trials z and extended the response model in an additive

manner: p(′ f1 higher′|δ ,z) = φ(αδ +∑d fd(zd)), with fd the unknown functions to

be learned.
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2.4.4 Application to neural data analysis: Gaussian Process Fac-

tor Analysis (GPFA)

A natural extension of the additive framework is to further allow the weighting

of individual functions to vary across observations. A recent analysis method for

neural data analysis, GPFA, corresponds to this extension and was developed at the

Gatsby Unit. Efficient approximations for the most general setting are however still

lacking and this section aims to fill this gap. This work was made in collaboration

with Lea Duncker, a PhD candidate at the Gatsby Unit and will be presented at

Cosyne [53].

We consider the task of inferring smooth neural trajectories from single trials

of simultaneously recorded neurons. GPFA is a method to solve this task under the

assumptions that temporal correlations in the high-dimensional neural population

are modelled via a lower number of shared latent processes, which linearly relate to

conditionally Gaussian [69] or Poisson [70] observations in neural space. This can

be seen as an extension of the additive setting with the introduction of a ’loading

matrix’ parameter C specifying weights in the additive predictors.

Formally, we model K latent processes as independent draws from Gaussian

Processes (GP) with potentially different mean functions mk(t) and covariance ker-

nels κk(t, t ′). We model the intensity function, or firing rate, for each of N neurons

as a linear combination of these latent processes, together with a constant offset d,

and map this linear predictor through a pointwise non-linearity g : R→R+to obtain

strictly positive firing rates:

λλλ (t) = g(Cx(t)+d) ,x(t) = [x1(t), ...,xK(t)]
T ,λλλ (t) = [λ1(t), ...,λN(t)]

T

We are interested in two extensions from previous work: (1) using a

continuous-time point-process likelihood (to avoid the often arbitrary and infor-

mation degrading binning process used in non-continuous-time methods), (2) to

derive a fast approximate inference algorithm based on our additive sparse varia-

tional approximation.
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Continuous time GPFA

Here, we model the number of spiking events in T ⊂ [0,T ), Φ(n), for neuron n ac-

cording to a Poisson Process, such that Φ(n)∼ Poisson
(´

T λn(t)dt
)
. The intensity

measure of the point process for neuron n is thus given by Λn(T ) =
´
T λn(t)dt

and drives the observed number of spiking events Φ(n). The model inputs are

the observed spike times t(n) ∈ RΦ(n)
+ for each neuron, which we will denote by

D = {t(1), . . . , t(N)}. The log-joint distribution of the observed spike times for all

neurons and latent processes is hence

log p(D ,x(t)|C,d,θ) =−
N

∑
n=1

ˆ
T

λn(t)dt +
N

∑
n=1

Φ(n)

∑
in=1

λn(tin)+
K

∑
k=1

log p(xk(t)|θk)

Our goal is to learn the model parameters C and d, the kernel hyperparameters

θ = {θ1, . . . ,θK} and infer the latent trajectories x(t). This requires computing the

posterior distribution p(x(t)|D ,C,d), which is intractable in this model.

Sparse approximation

In order to arrive at a scalable variational inference algorithm, we introduce a set of

inducing points U = [u(1), . . . ,u(K)] for each latent process, which are evaluated on

a set of “pseudo-spike-time” inputs Z = [z(1), . . . ,z(K)]. We choose an approximat-

ing distribution of the form q(U,X) =∏K
k=1 q(u(k),x(k)) =∏K

k=1 p(x(k)|u(k))q(u(k)).

Using this approximation and an assumed Gaussian form q(u(k)) = N (m(k),S(k)),

we derive a variational lower bound to the log-likelihood. Letting hn(t) =

∑K
k=1 cn,kxk(t) + dn denote the linear predictor for the n-th neuron with marginal

variational distribution q(hn(t)) = N (µn,σn
2) we have:

p(D |C,d,θ) ≥ −
N

∑
n=1

ˆ
T
Eq(hn)

[
g(hn(t))

]
dt +

N

∑
n=1

Φ(n)

∑
in=1

Eq(hn)

[
logg(hn(tin))

]
−

K

∑
k=1

KL
[
q(u(k))‖p(u(k))

]
Once again, this lower bound can be maximised directly with respect to the model

parameters, hyperparameters, variational parameters and pseudo-spike times. The

first term involves one-dimensional Gaussian integrals, which can be computed in

closed form or using efficient numerical approximations depending on the choice

of non-linearity g(·). The second term scales with the number of spiking events in
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D , while the Kullback-Leibler divergence in the last term scales with the number of

inducing points. Thus, none of the terms scale with the total duration of the exper-

iment, allowing for fine temporal resolution without increasing the computational

burden of the algorithm.

Application to simulated data

We simulate neural spike trains for 50 neurons using three underlying latent

processes (Fig. 2.1) and compare the inferred trajectories obtained from our

continuous-time approach (PP-GPFA) with those obtained from the discretised-time

Poisson approach in Zhao & Park, 2016 (vLGP)[70]. We initialize both methods

with noise-corrupted versions of the generative parameters.

For PP-GPFA, we run a fixed number of inference-only steps and subsequently

optimise the variational lower bound jointly with respect to the variational param-

eters, model parameters, hyperparameters and inducing points. Figure 2.2(1st row)

shows examples of the true firing rates and their estimates, showing that discretising

time may lose important information, even at relatively small bin widths. Overall,

the continuous time approach more accurately captures the high-frequency oscilla-

tions in the data than any of the discretisations and provides improved firing rate

estimates (Figure 2.2, 2nd row). This example illustrates that our point-process ap-

proach allows one to fully exploit the temporal resolution of the spike train and can

capture underlying structure that may be missed when using binned spike-count

observations.

2.5 Conclusion
This chapter provided a brief introduction to the framework of Bayesian Inference

underlying computations in the modelling work of this thesis. I reviewed the prob-

lem of Gaussian Process regression and its sparse variational approximation. I pre-

sented my extension to this approximation scheme for additive models. These meth-

ods will be revisited in further chapters of this thesis.
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Figure 2.1: Simulated spike trains for 50 neurons
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Figure 2.2: GPFA results: first row shows two example firing rates and their estimates
under the different methods. Second row shows plots of the true log-firing rates
against their estimates for each of the 50 neurons under the different methods.



Chapter 3

Pitch perception as probabilistic

inference

3.1 Collaboration statement
The work presented here is an extension of the unpublished PhD work of Phillipp

Hehrmann. A large portion of the chapter is devoted to presenting and summarizing

this work. This presentation starts with the necessary yet brief literary review of

the psychophysics of pitch perception and the neuro-physiology of the auditory

periphery necessary to justify the initial work. I will only introduce the material

necessary to understand the approach. Some visual material was borrowed from

this earlier work and this is acknowledged in all cases. Heiko Strathman and Dino

Sejdinovic also helped in early technical discussion on this project.

3.2 Introduction
Four properties - duration, loudness, pitch and timbre - are commonly used to de-

scribe the perceptual quality of a sound. Pitch and timbre remain vaguely defined.

Pitch is described as “that attribute of auditory sensation in terms of which sounds

may be ordered on a scale extending from low to high” [71]. For the broad class

of periodic sounds, the pitch of a sound is well described by its fundamental fre-

quency. However this definition is ambiguous and fails to account for the pitch of a

large range of sounds for which there is no fundamental frequency or the perceived

pitch departs from it. More importantly, the perception of pitch is highly dependent
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on the context or recent stimulation history. Timbre is even less well-defined. A

typical approach is to define timbre as the ensemble of all those qualities that distin-

guish sounds of equal perceived pitch, loudness and duration [72]. The perceptual

space of timbre was once termed the “psychoacoustician’s multidimensional waste-

basket” because of its definition in terms of negatives [73]. Among its dimensions

that have been studied [74, 75, 76] are the spectral center of mass – referred to as

“brightness”, the noisiness of sounds, the rise and decay rate of the waveform and

the related spectro-temporal modulations.

The perception of these sound qualities, which occurs with no conscious ef-

fort or attention, is still poorly understood and models describing perception as

mechanistic feature extraction often fail to account for many reported effects in

the psychoacoustic literature. In the case of pitch, this has lead to the proposal

that pitch perception might be an inferential process combining sensory evidence to

prior expectations [15]. Those prior expectations were described in the form of a

probabilistic model of pitch-evoking sounds that parametrically captured notions of

underlying periodicity, timbre and noisiness. Sensory evidence was given through a

neural stochastic transduction model capturing the principal features of the dynam-

ical sound encoding in the auditory periphery.

In this chapter, after summarizing this approach and presenting some of its

successes, I present my extensions to it. These extensions are both scientific and

technical. On the scientific side, the model is extended and a novel psychophysical

experiment is reported. On the technical side, a novel algorithm is derived and

tested to perform the - necessarily approximate - inference underlying the proposed

model of pitch perception. This algorithm was described in section 2.3.2.

3.3 Previous work: a probabilistic model of pitch

perception

3.3.1 Basics of pitch perception

Pitch is an important perceptual quality of many natural sounds. In all spoken lan-

guages, pitch carries prosodic information. In music, the definitions of musical
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scales, melody and harmony are unthinkable without reference to our perception

of pitch. As a stable attribute of sound sources, pitch plays a crucial role in scene

analysis. For example, knowledge of the slow variation of pitch in speech helps

source separation in a cocktail party context. As a perceptual quality, it has re-

sisted attempts at defining it as a physical property of sounds alone. As an example,

past sensory experience affects the perception of pitch. So a same sound can be

perceived in different ways depending on the context in which it is presented.

Psychoacoustics as a field was initiated as a means to uncover the relation-

ship between the subjective experience of the perception of sounds and the acoustic

stimuli, and to understand the neural underpinnings supporting auditory perception.

Reviewing definitions of pitch, the psychoacoustic literature on pitch percep-

tion and proposed models of human pitch perception is out of the scope of this the-

sis. I refer the reader to the book chapters of Alain de Cheveigne [77, 78], or to the

recent textbook by Schnupp, Nelken and King [79]. Such a review was performed

in the original thesis work of Philipp Hehrman [15]. Instead, I here summarize the

key ideas necessary to understand the following work.

1. To a first approximation, pitch may be treated as a unidimensional perceptual

dimension related to periodicity of sounds. Many physically different sounds

may evoke the same pitch and different pitches can be ordered on a scale

from low to high. As a perceptual dimension it can only be indirectly stud-

ied, through psychophysical experiments such as discrimination or matching

tasks.

2. The percept of pitch is constructed from the transduced neural activity in the

nervous system. Properties of the transduction have a strong influence on

pitch perception.

3. Throughout the years, many non periodic sounds, such as non harmonic

complexes or amplitude modulated white noise samples, have been found to

nonetheless evoke a sense of pitch. The striking tolerance of the sense of pitch

to strong departures from periodicity for this ’zoo’ of pitch evoking sounds

has fuelled and constrained the development of models of pitch perception.
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3.3.2 Pitch perception as Bayesian inference

Most natural, pitch-evoking sounds are approximately, though not perfectly, peri-

odic within short observation time windows. Building on previous work by Gold-

stein [80], Hehrmann et al [15] hypothesised that the auditory system is trying to

estimate their periodicity, based only on indirect observations through the noisy,

evoked neural response in the auditory nerve. Since the physical process of sound

generation, transmission and sensorineural transduction is inherently stochastic, op-

timal inference requires knowledge about the underlying statistical regularities and

irregularities. They formulated their model within the framework of Bayesian prob-

abilistic inference [81], which provides both the formal language to define this in-

ference problem rigorously, and the algorithmic tools to compute (or approximate)

its optimal solution.

Formally let Ω be the unknown period of a sound, θ be some additional un-

known features of the same sound (here timbral ones) and let p(Ω,θ) be their

known natural frequencies of occurrence in the environment. A generative model

of a pitch evoking sound s(t) was assumed conditional on those sound features

p(s(t)|Ω,θ). Finally a generative model of auditory nerve activity A(t) in response

to a sound input was assumed p(A(t)|s(t)). Inferring the underlying features from

auditory nerve activity correspond to computing the posterior

p(Ω,θ |A(t)) ∝ p(A(t)|Ω,θ) p(Ω,θ)

∝
ˆ

ds(t) p(A(t)|s(t)) p(s(t)|Ω,θ) p(Ω,θ)

Inferring pitch corresponds to the further marginalization of the posterior over

the other features.

p(Ω|A) =

ˆ
dθ p(Ω,θ |A)

In the following sections I will describe the different elements of this model:

the sound model and the transduction model. Following this exposition, I will

present my extension to the original model and its ability to explain some psy-

chophysical observations.
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Figure 3.1: Schematic of human vocal production. A: Glottal air-pressure wave- form gen-
erated by the periodic opening and closing of the vocal folds. B: The spectrum
of the emitted waveform (top) is the product of the glottal source spec- trum
(bottom) and the vocal tract resonance spectrum (middle). Taken from [15],
originally adapted from Lindblom and Sundberg [82]

3.3.3 Sound model: prior on pitch evoking sound

The source-filter theory of speech production [83] is essentially a model of periodic

sounds. In this model, the vocal tract is assumed to act as a linear filter on the

broad spectrum periodic glottal source, as depicted in Figure 3.1. As such it can be

regarded more broadly as a model of general pitch evoking sound production. The

authors constructed a generative model of such sounds by adding a distribution over

the filter. More formally, it was assumed that the soundwave of pitch evoking sounds

x(t) could be expressed as the convolution (denoted ∗) of a Ω-period dirac impulse

train IIIΩ(t) with a fixed filter f (t). A generative model of stationary periodic

sounds was thus constructed by providing a prior on the filter p( f ). Pitch perception

being robust to reasonable amounts of noise, additive noise of variance ν2 was

added to the soundwave.

f ∼ p( f |Ω)

η ∼ p(η)

x(t) | f ,η = (IIIΩ ∗ f )(t)+νη(t) (3.1)

The prior on the impulse response f (t) was designed to allow for variability in the

periodic pattern to be repeated, to capture in a parametric form two timbral notions.

The first one is brightness. A filter was sampled by smoothing out a white noise
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Figure 3.2: Anatomy of the human outer, middle and inner ear (from [84])

token n(t) with a Gaussian filter kσ (t) = exp
{
− t2

2σ2

}
of width σ . This imposed a

Gaussian shape to the spectral density of the filter and resulting sound. The second

timbral parameterization was to impose an explicit decay to the filter by applying

a decaying envelope e(t) to white noise token n(t) prior to its smoothing. This

can be thought of applying an extra amplitude modulation to the signal. Width and

phase of this envelope e(t) were also randomized. This generative model defines a

distribution over a wide range of pitch evoking sounds.

3.3.4 Transduction model

A simplified model of auditory transduction was derived to capture its key features

known to affect and limit pitch perception. I here describe the transformation steps

from soundwave s(t) entering the ear to tonotopic activity in the auditory nerve A(t),

along the auditory pathway depicted in Figure 3.2, and how they were modelled.

The auditory periphery starts with the external ear, which corresponds to the

pinna and the ear canal. Sound s(t) propagating through the air passes through

the ear canal and hits the ear drum, the entry to the air-filled middle ear. The ear

drum transmits the mechanical vibration it receives via three ossicles to the inner

ear, through one of the two flexible parts of cochlea situated at its base: the oval

window. The cochlea is a fluid-filled, helically coiled tube encased in a hard shell
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Figure 3.3: Gammatone Filter bank. A: Spectral magnitude response of 12 gammatone
filters as used in the model. B: Impulse response of three filters (from [15]).

bone. There is where the transduction happens.

3.3.4.1 Basilar membrane motion

The basilar membrane runs along the tube, from base to apex (see cross-section in

Figure 3.4). It is deflected by the incoming vibration of the oval windows in posi-

tions depending on the frequency content of the incoming mechanical vibration in a

tonotopic manner, with a log mapping between position and frequency from 20Hz

at the apex to 20kHz at the base. A classical description of the oscillating movement

of the basilar membrane m(x) at a position x is as the output of the convolution with

a Gammatone filter with central frequency fx: mx(t) ∝ tn−1e−2πβxt cos(2π fxt). The

Gammatone filterbank is a discretized model of the motion of the full membrane

with center frequencies log-homogeneously spaced and pass-band width growing

with center frequency. In our model, the filterbank parameters were chosen follow-

ing the implementation of Patterson et al. [85] and Slaney [86] so as to best match

observations of human basilar membrane motion. A depiction of the filterbank used

in [15] and in my own experiments is shown in Figure 3.3.

3.3.4.2 Hair cells and auditory nerve

Hair cells populate one side of the basilar membrane as depicted in Figure 3.4. I

only consider the feed-forward role of inner hair cells (IHC) in conveying sound

information to the brain. The motion of the basilar membrane m(t) opens ion chan-

nels on the IHCs giving rise to a ion current flow i(t), later generating spikes in the
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Figure 3.4: Cross-section of the cochlea, and schematic view of the hair cells in the organ
of Corti (from [79]).

auditory nerve after a few synaptic relays. This ion channel opening is asymmetric

with the oscillation sign and for slow oscillation is well modelled as a half-wave

rectification of the oscillation: i(t) ∝ r(m(t)). For differentiability reasons, a soft

rectifier was used: r(z)= log(1+exp(αz))
α

. The ion current created as a result of motion

has an inertia and can only “track” the oscillation that gave rise to it for frequencies

up to 4 to 5 kHz [87]. Higher frequencies are still transmitted, but the filtering of

the rectified oscillation leads to a demodulated envelope signal only (See Figure

3.5). This final inertia was modelled as the action of a low-pass linear filter l(t):

i(t) = (r(m)∗ l)(t). Finally the fibres of the auditory nerve are organized in a simi-

lar tonotopic manner, and transmit spike trains with rates corresponding to the IHC

potentials fluctuations.

A graphical depiction of the full model (sound and transduction) is given in

Figure 3.6.

3.3.4.3 Features affecting pitch perception

The proposed model of auditory transduction accounts for two main limitations of

this transduction affecting the perception of pitch.

1. Resolvability limit: the bandwidth of the filters describing basilar membrane

motion scales with their central frequency. For high frequencies, this band-

width is large. Hence, multiple harmonics of harmonic complexes of low

pitched sounds may pass through a broad filter and later interact due to the
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Figure 3.5: IHC receptor potentials in response to tones of different frequencies presented
at 80 dB SPL, measured at the basal turn of a guinea pig cochlea (from [87]).

non linearity of the rectification. This means individual high harmonics can-

not be read out from individual channels; they are not resolvable

2. Phase-locking limit: the IHC potential in response to high frequency tones do

not oscillate like the basilar membrane at the corresponding position. Infor-

mation about the phase of the oscillation is lost.

These limitations have fuelled a debate on the nature of the information carried

about pitch in the auditory nerve activity and how it is read out later on in cortical

areas. On the one hand, the irresolvability of high harmonics prevents a “spectral”

only representation of pitch: there is no encoded spectrogram from which to clearly

read out the harmonics present in a harmonic complex. On the other hand, the

lack of temporal information in the output of high-frequency tuned IHC prevents

a purely “temporal” approach : there is no periodicity information in a flat signal.

This debate is explained in great detail in [77].

3.3.5 Inference

The inferential problem of interest is to compute the marginal likelihood or evidence

l(Ω) = p(A|Ω) of a pitch candidate value Ω, where A is the transduced auditory

nerve activity due to a sound s ∈ RD . The calculation of the evidence requires

marginalizing over a sound as follows: l(Ω) =
´

ds p(A,s|Ω). Hehrmann et al [15]
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Figure 3.6: A generative model of naturalistic, approximately periodic sounds and evoked
auditory nerve responses. A pulse train with period Ω is convolved with a
randomly-generated acoustic impulse response f and corrupted by additive
noise to obtain an acoustic waveform x. x evokes responses in auditory nerve
fibres i = 1...C as follows: in each channel, the waveform is filtered by a linear
bandpass filter with impulse response bi . Its output is half-wave rectified and
low-pass filtered before further noise is added, resulting in a demodulation of
the filter outputs for oscillation rates above the low-pass cutoff frequency.

proposed two algorithms to approximate the evidence.

3.3.5.1 Laplace approximation

The first one was the Laplace approximation [81]: Writing s∗ = argmax p(A,s|Ω),

the sound that maximizes the posterior, the log-joint distribution over A and s can

be Taylor-expanded around s∗:

log p(A,s|Ω)≈ log p(A,s∗|Ω)− 1
2
(s− s∗)T Hs∗(s− s∗)

where Hs∗ is negative Hessian of the log joint at s∗

Hs∗ =−∇2
s log p(A,s|Ω)|s∗

Intuitively, this corresponds to approximating the posterior over the unobserved

sound as a multivariate Gaussian distribution around its mode, with the covariance
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matching the curvature at the mode. The evidence can then be approximated as

l(Ω) =

ˆ
ds p(A,s|Ω)

≈ p(A,s∗|Ω)

√
(2π)D

detHs∗

3.3.5.2 Sampling based approximation

The evidence can be seen as an expectation l(Ω) = Ep(s|Ω)[p(A|s)]. Provided with

independent and identically distributed (iid) samples from the prior, si ∼
iid

p(s|Ω), the

evidence can be approximated as l(Ω) ≈
N→∞

1
N ∑N

i p(A|si) which is a particular case

of Importance Sampling. This fails in high dimensions because most of the mass

in the integral
´

ds p(A,s|Ω) is associated with values of s likely under the prior

but unlikely to explain the observations A well. Thus the time required to obtain

even few representative samples becomes prohibitively large. In [15] the authors

proposed a sampling based scheme known to provide accurate approximations in

high dimensions: Annealed Importance sampling [88] using Hamiltonian Monte

Carlo sampling [89].

3.3.5.3 Limitations

The Laplace approximation though fast often performs poorly in high dimensions.

Finding the posterior mode might be hard and the Gaussian approximation to the

posterior around the mode might be a poor one. On the other hand, the sampling

algorithm proposed is better behaved but prohibitively expansive to run; for this rea-

son, it was tested but not used in [88]. The algorithm I used based on sparse varia-

tional Gaussian Process approximations provided the needed intermediate technical

solution that is both fast and accurate.

3.4 Extension: Simpler yet richer prior model

3.4.1 Another timbral dimension: pattern variability

The generative model of sound proposed earlier is one of noisy periodic sounds.

Noise is the only deviation from periodicity modelled. Another deviation observed

in most natural pitch evoking sounds, including voiced speech is the slow variation
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in time of the pattern that is exactly repeated in periodic sounds. This variation is

a critical aspect of the timbre. When lacking, sounds sound somehow unnatural or

artificial. Keeping the source-filter model inspiration, a different filter could be used

in the convolution with each impulse of the impulse train. A simple probabilistic

model of this discrete variation, that preserves the stationarity of the model is of a

variance preserving autoregressive model (a particular instance of a Markov chain):

fi+1| fi = e−Ω/ρ fi +
√

1− e−Ω/ρεi

where both the initial filter f0 and εi are independently sampled from the same

shared filter model p( f ). The constructed signal can no longer be written as a

convolution. Instead, it is given by: x|F
¯
= ∑i fi ∗ δ (t − iΩ), where F

¯
= ( f0, f1...)

represents the consecutive filters of the chain. In the filter definition, ρ parame-

terize the temporal locality. This new generative model defines a distribution over

pitch evoking sounds and has more “mass” on voiced speech sounds whose repeated

pattern vary in time. I showed in previous work that speech sounds are more likely

under this model than under a white noise model of matched variances [90]. This

was not true under the original model of [15].

3.4.2 A Gaussian process formulation

Chosen p( f ) to be smoothed Gaussian white noise with a Gaussian filter kσ as in the

original model without the decaying envelope, this generative model can be shown

to result in audio samples that correspond to draws from a Gaussian Process with a

stationary covariance function given by

Kθ (τ) =
∞

∑
l=−∞

e−Ω|l|/ρkσ (τ− lΩ)+ν
2
δ (τ). (3.2)

This stationary kernel is associated to a spectral density S(s), through the Fourier

transform

S(s) = F{Kθ}(s) =
(

∞

∑
l=−∞

e−Ω|l|/ρe−ilΩ

)
F{kσ}(s)+ν

2

The Fourier series has a clearer interpretation if we replace the discrete weights

in the sum e−Ω|l|/ρ by the continuous k1,ρ(τ) = e−|τ|/ρ in the kernel expression
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Figure 3.7: Kernel function of Equation 3.3 and its spectral density.

(Laplacian covariance function), resulting in:

˜Kθ (τ) = k1,ρ(τ)
∞

∑
l=−∞

kσ (τ− lΩ)+ν
2
δ (τ)

= k1,ρ(τ)(IIIΩ ∗ kσ )(τ)+ν
2
δ (τ),

In this expression, the kernel is expressed as a product of a periodic kernel made

of Ω-spaced repetitions of the Gaussian kernel (IIIΩ ∗ kσ )(τ) and of a Laplacian

kernel k1,ρ(τ) with additional white noise. The spectral density of this kernel is

S̃(s) = F{ ˜Kθ}(s) = F{kρ}∗
(
F{kσ}(s)IIIf(s)

)
+ν

2,

which is a Gaussian-modulated Dirac comb, convolved by F{kρ}(s) = 2ρ

1+ρ2s2 . An-

other interpretation is as a blurred harmonic spectrum, where the blur is controlled

by parameter ρ .

An alternative kernel function that has very similar properties to (3.2) is given

by

Kθ (τ) = exp
(
− 2

γ2 sin(πfτ)2
)

exp
(
−|τ|

ρ

)
+ν

2
δ (τ). (3.3)

This kernel is obtained from standard kernels: periodic and Laplacian, which have

been used extensively in the literature on Gaussian Processes – cf. [91] and refer-

ences therein. This kernel function constitutes a good approximation to (3.2) while

preserving the interpretation of its parameters: fundamental frequency f = 1/Ω,

smoothness γ , correlation decay ρ , and the additive noise parameter ν . Smooth-

ness in this formulation is approximately related to that in 3.2 as γ ≈ σπ/Ω. Figure

(3.7) illustrates the interpretation of these parameters in both the time and frequency

domain.

The formulation as a Gaussian Process has the following advantages: Scien-
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tifically it provides a structured prior on sounds in a simple and elegant manner.

Technically it makes it possible to use the wide range of recent technical advances

in probabilistic inference using Gaussian Processes, and in particular, the sparse

variational inducing point approximation.

3.4.3 Unifying temporal and spectral methods

Let us consider the task of periodicity estimation directly from the sound wave,

ignoring the transduction part of our model.

A sound x obtained from the model on time samples t = (t1 . . . ts) is simply a

normal vector with mean 0 and covariance matrix Kθ , where (Kθ )i j = Kθ (ti− t j).

Thus, the log-likelihood function of parameters θ can be written as

L(θ) = log{N (x;0,Kθ )}=−
1
2

log |Kθ |−
1
2

xT K−1
θ

x.

Let us now restrict attention to the fully periodic case, i.e., we set ρ = ∞.

When the sound duration and the sampling frequency fs are respectively multiples

of Ω= 1/f and f, Kθ is a circulant matrix. It can thus be diagonalized by the Fourier

matrix F as Kθ = F∗Λθ F . The eigenvalues in Λθ are positive and correspond to

the expected spectral energy under the generative model. By denoting s = Fx, the

likelihood function can be rewritten as

L(θ) = −1
2

log |Kθ |−
1
2

xT K−1
θ

x

= log
{
N
(
|s|;0,Λθ ,i

)}
= −1

2 ∑
i

logΛθ ,i−
1
2 ∑

i

|s|2i
Λθ ,i

.

Thus, the likelihood of sound x corresponds to the likelihood of the modulus of its

spectrum |s| under the centred Gaussian density of variance corresponding to the

expected spectral density Λθ .

Pitch estimation through likelihood maximization has a direct interpretation

as probabilistic spectral matching [92] where the patterns to be matched to are the

expected spectrum under our statistical model. The strobing method for pitch es-

timation [93] corresponds to maximum likelihood under a GP model with a Dirac

comb kernel. This model is the limiting case of σ ,ν → 0 and ρ = ∞ in Equation
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3.2. It is interesting to note that phase information is irrelevant. This is a direct

consequence of the choice of a stationary kernel. Psychophysically this is consis-

tent with the fact that humans are insensitive to the relative phase of harmonics in a

harmonic stack so long as the harmonics are resolved.

When the kernel is no longer periodic, the covariance matrix of the associated

Gaussian is no longer circulant and its eigenvectors are no longer simple discrete

sines. However, for small deviations from periodicity, the interpretation as spectral

matching remain a valid approximation. In this view, the different parameters of

the generative model have the following interpretation: ν is a tolerance for spectral

power homogeneously on the whole spectral domain, ρ is a tolerance on the precise

spectral location of the peaks of harmonics in a signal, σ imposes an expected the

decay of spectral energy at high frequencies.

The autocorrelation method for pitch estimation correspond to likelihood max-

imization with a non periodic kernel: the cropped dirac comb (δ−Ω + δ0 + δΩ),

where δx is the x-shifted dirac function. The underlying generative assumption is a

’local periodicity’ and non-smoothed white noise filters.

In this view the generative approach I propose generalizes both spectral and

temporal methods methods when the specificities of transduction are ignored.

3.5 Model evaluation
The evaluation presented here is not meant to be exhaustive. A full attempt at re-

producing a large range of psychophysical observation relating to pitch perception

was performed by Hehrmann et al [15]. Here, I show that the new version of the

model along with the new inference method can replicate a subset of critical obser-

vations: I demonstrate the ability of our model to predict the pitch of both periodic

and non-periodic sounds.

3.5.1 Evaluation methodology

• Sounds: All sounds were designed to evoke a pitch around f0 = 250Hz, have

a duration of 40ms and to have a waveform of unit variance. They were

sampled at a rate of 16kHz.
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• Transduction model: The filterbank in the transduction model had 12 chan-

nels. The noise level was set to achieve a signal to noise ratio of 10dB. Audi-

tory nerve activity was binned at 5kHz.

• Sound model: ρ was set to 40ms, σ was set to 0.1ms.

For all sounds s, auditory nerve activity A(s) was sampled and likelihood of

the full model was computed on a grid of candidate pitch values depending on the

predicted pitch.

3.5.2 Sounds

Sounds tested are :

• HCT: a missing fundamental harmonic complex with equal amplitude har-

monics from rank 3 to 7, evoking a clear pitch at f0

• IRN: an Iterated rippled noise token [94], consisting of white noise repeatedly

delayed by Ω, and added back to itself 4 times. This sound evokes a clear

though weak pitch at f0 = Ω−1.

• AMT: Amplitude modulated tones, a non-harmonic triplet of pure tones at

frequencies f c− g, fc, fc + g, with fc = 1920 and g = 200. The individual

tones of this example are unresolved. Denoting by n the rank of the harmonic

of g that is closest in frequency to fc and ∆ f the frequency difference between

the two, the perceived pitch of the triplet has been shown to be approximately

equal to fp = g+ ∆ f
n . In this example, the closest harmonic of g close to

fc is at n = 10 and is equal to 2000Hz, hence fp = 192Hz [95]. Subjects

often report alternative pitch percepts at values corresponding to an under or

over estimation of n by ±1. In this case, alternative reports are at 212Hz and

172Hz.

Example samples of the tested sounds are given in Figure 3.8.

3.5.3 Results

The likelihoods for an array of pitch candidate values are reported in Figure 3.9 for

20 repetitions of the sound generation, transduction, and inference. For the IRN and

HCT a clear peak at f0 = 250Hz is obtained. the inferred pitch for the inharmonic
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Figure 3.8: Sounds used for model evaluation: a IRN, a harmonic complex with missing
fundamental, a non harmonic tone triplet.

tone triplet is shifted to 267Hz consistent with human reports, although other pitch

candidates at lower values are also plausible. This demonstrates the ability of the

proposed model of human pitch perception to predict human pitch percept for a

variety of pitch evoking sounds.

3.5.4 Discussion

On the examples reported, the model predicts the most important qualities of per-

ceptual reports across many different sounds. Although other models also explain

those qualities, explaining the pitch of sounds who either lack temporal or spectral

pitch for cues altogether with a single model is already a success [78].

3.6 Psychophysical experiment: timbre influences

pitch perception

3.6.1 Motivation

3.6.1.1 Demonstrating the effect of brightness of pitch perception

The most common type of errors in human pitch judgements, aside from small de-

viations around the ’true’ pitch due to limited discriminability, are octave mistakes,
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Figure 3.9: Likelihood profile for the tested sounds. In red, likelihoods (lines) and max-
imum likelihood (circles) for several repetitions of the experiment. In dashed
black, average over the repetitions. Vertical blue lines mark predicted dominant
and secondary pitches.

or the tendency to report octave-related values for pitch evoking sounds [96]. This

is because octave related sounds are perceived as perceptually close. This has led to

the concept of the position within an octave as a second, circular dimension called

tone chroma, in addition to the first dimension, which scales monotonically with

frequency and which is called the tone height. A simple spatial representation of

pitch in these two dimensions is in the shape of a helix, where the chroma dimension

winds around a tone-height axis [97]. Hehrmann et al [15] showed that these errors

are strongly influenced by the brightness of sounds. To do so, convex mixtures of

two click trains sharing the same chroma, one with a ’low’ pitch of f0 = 250Hz and

one with a ’high’ pitch of 2 f0 = 500Hz, were designed with κ ∈ [0,1] controlling

the relative weight of each click train: κ = 0 corresponds to the low pitch sound,

κ = 1 corresponds to the high pitch sound, intermediate values correspond to al-

ternating click trains. At some intermediate value of interpolation κ∗, the mixture

is ambiguous in pitch, in the sense that when indirectly asked to report which of

the two pitches -low or high- is played, subjects report either of the two with equal

probability. A representation of some mixtures in the helicloidal perceptual space
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Figure 3.10: (a) The pitch helix. The musical scale is wrapped around so that each circuit
(red) is an octave. (b) Spectrum of the individual click trains (h1,h3) and one
mixture (h1). (from [98] where similar sounds are used).

and of their spectrum is given in Figure 3.10. Smoothing the mixture (i.e. manip-

ulating its brightness) affected the point of subjective ambiguity in the following

way: the darker (resp. brighter) the sound the higher (resp. lower) the proportion of

’high’ pitch sound was needed in the mixture for it to be perceived has high.

A possible confound of the use of alternating click trains is that the sharp attack

of dominant clicks might mask the following lower amplitude clicks explaining part

or all of the effect of smoothing as a decrease of the sharpness of the clicks and

hence of their masking effect. Here, I partly reproduce this experiment changing

the stimuli mixed together to generate mixtures ambiguous in pitch. A click train

is a harmonic complex containing all harmonics with equal amplitudes and zero

phases. I randomized the phases of these harmonics which preserved the pitch and

spread the energy in time preventing the undesired masking effect.

3.6.1.2 Learned pitch-brightness dependence in natural sounds ex-

plains the effect

Hehrmann et al [15] revealed a statistical dependence between pitch and brightness

studying large databases of natural pitch-evoking sounds. More precisely, the spec-

tral centroid fc defined as the center of mass of the spectrum was shown, on average,

to covary with pitch as fc( f0) = 56.8
√

f0 (see Figure 3.11). In the generative model
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Figure 3.11: Fundamental frequency ( f0) and spectral centroid ( fc) for sounds from a col-
lection of 20 musical instruments and two voices. Black circles represent f0
and fc for each tone from the ensemble. Red line represent the best fitting
parametric coupling (from [15]).

they described, and in my extension to it, the spectral centroid is inversely propor-

tional to the smoothness parameter fc ∝ 1/σ . As a result, the statistical knowledge

of the pitch-brightness dependence is readily encoded by forcing a deterministic

coupling between σ and f0. The authors showed that this a priori coupling in the

model could reproduce the effect of brightness on pitch. In the following section,

we test the hypothesis that the same coupling explains the biasing effect of bright-

ness on pitch on my modified version of his experiment.

3.6.2 Task description

A fundamental frequency was set to f0 = 250Hz for the whole experiment. ’Tar-

get’ sounds (T) were constructed to ambiguously evoke pitch at either f0 or 2 f0 =

500Hz. Ambiguous sounds were created as an interpolation of non-ambiguous

sounds at f0 and 2 f0 with interpolation coefficient κ ∈ [0,1]. κ = 0,1 both cor-

respond to non ambiguous sounds at the two extremes of the octave range. For

intermediate values of κ , the percept progressively shifts reaching a point of sub-

jective equality (PSE). these target (T) sounds were presented to subjects in be-

tween two flankers (F) designed to have a non ambiguous pitch at frequency

fi = f0
√

2 ≈ 353Hz, which is midway between f0 and 2 f0 on a log scale. Sub-
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Figure 3.12: Task design: after an inter-trial interval of 1s, a sound triplet consisting of a
target surrounded by two identical flankers is presented, following which sub-
jects have to judge the melodic contour as either “rising-falling” or “falling-
rising”.(from [15]).

brightness σ σdark = 0.2ms, σmedium = 0.12ms, σbroad = 0.08ms
ambiguity κ 0, 0.2, 0.4, 0.6 , 0.8, 1

Table 3.1: Target parameters

jects were presented triplets of sounds FTF played consecutively. Intuitively if the

ambiguous target is perceived as closer to 2 f0, the perceived sequence undergoes a

melodic contour constituted of an upward shift followed by a downward shift↗↘.

If the target is perceived as closer to f0, then the perceived melodic contour is↘↗.

Subjects were asked to classify the melodic contour as either ↗↘ or ↘↗. The

manipulation of interest is to vary the target brightness.

Target sounds for both periods were constructed as follows. First the two pe-

riodic sounds to be mixed were click trains in which the phases of all harmonics

were randomized. The resulting signals were smoothed using a Gaussian kernel kσ

with width σ ∈ {σdark,σmid,σbroad} applying one of 3 desired brightness level to

the click trains. Targets were constructed by mixing these sounds with mixing fac-

tor κ ∈ {0,0.2,0.4,0.6,0.8,1} (see Table3.1). Flankers were missing fundamental

harmonic complex tones with brightness level corresponding to the σmid conditions.

3.6.3 Experimental setup and results

Five subjects (including two of the authors), aged between 25 and 30, took part in

the experiment. After instruction and a short training period, each were presented 18

different stimulus classes, 30 times each. These 18 classes correspond to 3 different

brightness levels (broad, medium,dark) ×6 ambiguity levels (See Table 3.1). The

precise timing of the presentation of stimuli in each trial is given in Figure 3.12.

For each target condition and subject, I computed the fraction of trials in which
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Figure 3.13: Psychophysical results: individual performance (lines) and average over sub-
jects (dashed) for the 18 conditions. Colors correspond to the brightness fac-
tor.

the contour was perceived as ↗↘. A ↗↘ response implies that the pitch of the

target was perceived as higher than the flankers, a↘↗ response implies that it was

perceived as lower. Furthermore, the likely pitches for any target, predicted from

any pitch perception model, are either 250 or 500 Hz. Hence, I assume throughout

the following that I can equate a ↗↘ responses with a pitch percept of 500 Hz

(“high”), and a ↗↘ response with a pitch of 250 Hz (“low”), which are the two

possible pitches reported when the ambiguous test sounds are played in isolation. I

generated a set of three psychometric curves for each subject, showing the fraction

of high-pitched targets as a function of the ambiguity parameter for each of the

three timbre conditions (broad, medium dark). These curves were averaged across

subjects and are presented in Figure 3.13.

The results qualitatively match our expectations. As the target signal get

broader, the responses are biased towards “high” as revealed by the shifts in the

point of subjective equality. The two extremes of the ambiguity were expected to

be non-ambiguous whatever the brightness of the target. This is the case for three

subjects. The two others show either permanent bias towards responding ’high’, or

still perceives the sounds generated from the two extremes of the octave range as

ambiguous. This explains the shape of the averaged results.
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3.7 Conclusion
In this chapter, I summarized the proposal by Phillipp Hehrmann that pitch per-

ception could regarded as the outcome of a computational problem: inferring the

periodicity of an underlying sound from its transduced activity in the auditory pe-

riphery. I presented two technical extensions. First the model was extended to pro-

vide a richer description of pitch evoking sounds by introducing the timbral notion

of local periodicity. Second, a novel algorithm was derived to solve the inference

problem. I demonstrated the validity of these extensions by testing the predictions

of the new model on a subset of sounds for which it reproduced the pitch percept

reported by human subjects.

A new psychophysical experiment demonstrated the effect of timbral bright-

ness on pitch perception. A limitation of this work is that we restricted our analy-

sis to stationary sounds of fixed underlying periodicity. In natural sounds such as

speech, pitch varies smoothly with time. This knowledge could be added to the

model and could allow to account for temporal contextual effects in pitch percep-

tion.



Chapter 4

Temporal contextual effects in the

perception of ambiguous pitch shift

Collaboration Statement
The work presented here is the result of a collaboration between Claire Chambers,

Daniel Pressnitzer at ENS (Paris) and Maneesh Sahani and myself at the Gatsby

Unit (UCL, London). Experiments were carried out by the French team. Models

and analysis reported here all started after the behavioral data were collected. They

were developed and carried out in London. Results of this collaboration are jointly

published in [48].

4.1 Introduction
Chambers et al. reported a perceptual phenomenon, where prior acoustic context

has a large, rapid, and long-lasting effect on a basic auditory judgment [48]. Pairs

of complex tones were constructed to include ambiguous transitions between fre-

quency components, such that listeners were equally likely to report an upward or

downward “pitch” shift between tones. It was then observed that presenting context

tones before the ambiguous pair could almost fully determine the perceived direc-

tion of shift. This context effect generalized to a wide range of temporal and spec-

tral scales, encompassing the characteristics of most realistic auditory scenes. My

contribution to this work is to have constructed a computational model that quanti-

tatively explained and reproduced the behavioral results. The model proposes that
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the reported bias is the side product of an underlying computation: a pre-perceptual

tracking of spectrally local and temporally continuous components assumed to be

the building blocks of auditory scenes. The function implements a simple con-

straint of spectro-temporal continuity and leads to the binding of successive sound

elements in a probabilistic manner. Similar tracking mechanisms might underlie

many human scene analysis computations in natural perception.

4.2 Contextual resolution of perceptual ambiguity: a

psychophysical study
In this section, I report recent psychophysical results [48] from the PhD work of

Claire Chambers. These results reveal a strong effect of prior acoustic context on

the perception of ambiguous stimuli. Details of the statistical analysis of the psy-

chophysical results may be found in [48] and are omitted from this description.

4.2.1 Shepard tones and Ambiguity

Shepard tones [99] are constant-interval chords parameterized by a base frequency

fb and a log-normal spectral envelope e( f ). Given fb and e, a Shepard tone is

constructed as a mixture of pure tones at frequencies corresponding to all powers of

2 of the base frequency fb and with amplitude given by the spectral envelope e. That

is the waveform is x(t) = ∑i∈Z cos
(
2π2i fbt +φi

)
e
(
2i fb

)
, where φi corresponds to

the phase of each component, which were always randomized.

A fixed envelope covering all audible octaves (Fig. 4.2a, tone T1) is considered

throughout all experiments. All Shepard tones are described by considering a single

octave of base frequencies. This is because octave-related base frequencies result

in physically identical Shepard tones.

Perceptually, a sequence of two Shepard tones with a small increase (resp.

decrease) in base frequency is perceived as an upward (resp. downward) step in

pitch. However, a half octave shift is perceived as ambiguous, that is, on average

listeners report hearing an upward shift 50% of the time.

Throughout all the following experiments, Shepard tones were used.
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Figure 4.1: Pitch Chroma Circle of Shepard tones and Escher stairs. Small upward (resp.
downward) shifts in pitch chroma for otherwise similar Shepard tones are per-
ceived as such whereas 1/2 octave shifts are ambiguous. On Escher stairs, one
can try to judge whether one character is climbing upward or downward toward
the other one. Ambiguous situations arise when the 2 characters are opposed
on the stairs.

4.2.1.1 Ambiguity

As a baseline, two Shepard tones (T1 and T2) were presented in close succession.

The duration of each tone was 125ms. The inter-tone interval (ITI) between T1

and T2 was 125ms. The frequency interval between T1 and T2 was varied randomly

across trials. Listeners reported which tone, T1 or T2, was higher in pitch. Replicat-

ing previous findings [99], listeners tended to report the direction of pitch shift cor-

responding to the shorter log-frequency distance between successive components

(Fig. 4.2b). A special case occurred when the T1-T2 interval was exactly half an

octave (six semitones): there was no shorter path favoring either upward or down-

ward shifts. Accordingly, perceptual reports were evenly split between “up” and

“down” responses [100, 101]. Although strong idiosyncratic biases across listeners

have been reported previously for such ambiguous stimuli [100], the randomization

of absolute base frequency across trials cancels out such biases.

4.2.2 Contextual effects: Resolving ambiguity

Acoustic contexts consisting in Shepard tones were introduced before the pitch-shift

judgements on the test pair, T1-T2. The T1-T2 interval was held fixed at a half-octave,

the ambiguous case.
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4.2.2.1 Single contextual Shepard tone

In its simplest form, a single context tone, C, was played immediately before the test

pair. If context did not matter, responses should be evenly split between “up” and

“down”. In contrast, it was found that there was a strong influence of the context

tone on perceptual reports. Listeners tended to report the shift encompassing the

frequency components of the context tone, with maximal bias for a context tone

located halfway in between T1 and T2 (Fig. 4.2d).

4.2.2.2 Multiple contextual Shepard tones

In the same experiment, the number of context tones was randomly varied between

0 and 10 context tones. The relative chroma of context tones were randomly drawn,

uniformly, from one of two half-octave frequency regions: only positive intervals or

only negative intervals relative to T1 (Fig. 4.2e). Perceptual responses were summa-

rized by computing P(Bias), the proportion of time listeners responded with a bias

in the direction expected from Fig. 4.2d., the single tone context case. P(Bias) = 1

would correspond to listeners always reporting pitch shifts encompassing the fre-

quency region of the context tones, whereas P(Bias) = 0 would correspond to lis-

teners always reporting the opposite direction of pitch shift. An absence of context

effect, that is, a response probability unaffected by the context, would correspond

to P(Bias) = 0.5.

The strength of the context effect increased with the number of context tones

(Fig. 4.2f). Remarkably, after about five context tones were presented, almost all

perceptual reports were fully determined by the preceding context. For the exact

same ambiguous test pair, listeners went from randomly reporting up or down shifts

to almost invariably reporting the same direction of shift with context.

It is important to note that the sequence of “up” and “down” pitch shifts dur-

ing the context was randomly varied across trials (see Fig. 4.2e for one instance).

Rather, the frequency content of the context (more precisely its pitch chroma) rel-

ative to the test was the experimental variable. This resolves previously conflicting

reports concerning contextual processing with Shepard tones. Attempts to adapt-out

the direction of frequency-shifts only resulted in weak and unreliable contrastive
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Figure 4.2: Ambiguous test pairs and context effects. (a) Schematic spectrogram of the T1-
T2 test pair (amplitude coded as gray scale). T1 and T2 are “Shepard tones” with
octave-related components. For the interval of half-an-octave (6 st) represented
here, all components of T1 are exactly halfway in between two components of
T2 on a log-frequency scale. Here and in remaining stimulus plots, red arrows
indicate the variable manipulated in the experiment. (b) Perceptual judgements
without context. Here and elsewhere behavioral results are shown in red and are
overlaid with simulated results shown in blue. The proportion of “T1 higher”
responses, P(T1H), is plotted as a function of interval between T1 and T2 (n=11
listeners). Here and in all subsequent figures, error bars show 95% confidence
intervals. The dotted line at 0.5 indicates the point of subjective indifference,
with as many “up” and “down” responses for the same physical stimulus. (c)
Example trial with a single context tone preceding the ambiguous test pair. For
clarity, the illustration is restricted to a one-octave range (gray patch of panel
A) but actual stimuli included many frequency components, with the same ar-
rangement in all audible octaves. (d) The P(T1H) is shown as a function of
the interval between C and T1 (n=11 listeners). Without context effects, all
responses would be at 0.5. (e) Example trial with multiple context tones. Lis-
teners reported the perceived shift between T1 and T2 only. (f) The proportion
of reporting a shift encompassing the frequency region of the context tones,
P(Bias), is shown as a function of the number of context tones (n=11 listeners,
red). In the baseline condition with no context tone, P(T1H) is displayed

context effects [102, 103], whereas studies which, retrospectively, can be under-

stood as having manipulated the frequency relationship between context and test,

found strong context effects [45, 46, 101].
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4.2.2.3 Generalization over time-scales

It was then examined whether the context effect observed could generalize to longer

and shorter time scales. In the case of the biasing of ambiguous visual-motion [30],

it has been observed that attractive effects occurred for short time scales, whereas

contrastive effects occurred for longer time scales. It was thus possible that the

auditory context effect reverses, or disappears, depending on the time scale of the

stimulus. How fast can the context effect be established? A single context tone

was used and its duration was varied between 5ms and 320ms, with the duration

of the test tones T1 and T2 maintained at 125ms (Fig. 4.4a). The same direction of

perceptual bias was observed over a broad range of context tone durations (Fig4.4b).

The bias increased with context duration and saturated between context durations

of 160ms to 320ms and I expect longer durations to even more strongly determine

the direction of subjective reports.

The authors also addressed the complementary question of how long the bias

persisted, once established. Five context tones were presented, each 125ms long,

followed by a silent gap and then a test pair (Fig. 4.4c). The gap was varied be-

tween 0.5s to 64s, during which attention was not controlled. Predictably, the bias

decreased with increasing gap duration (Fig. 4.4d). In the individual data, for some

listeners, there was in fact very little decrease in bias between 0.5s and 64s. Thus the

present context effects covers a wide range of time scales; it is induced with a con-

text as short as 20ms but persists over interruptions up to 64s for some listeners. For

comparison, contrastive effects for speech recognition have been demonstrated for

a context as brief as about 300ms [104] and for interruptions of up to 10s [105, 106].

Shorter time constants have been found for the spectral motion aftereffect, which

can be observed with inducers as short as 100ms [42, 43]. The long time-constants

found here are in fact reminiscent of what has been termed “storage” for visual

aftereffects [107], but not demonstrated in audition. The present auditory context

effect thus covered an unusually broad range of temporal parameters. Importantly,

the fact that context effects can be both rapidly established and persist for a long

time shows that their underlying mechanisms may operate for most everyday audi-
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Figure 4.3: Generalization over frequency scale. P(T1H) is shown as a function of the
octave-scaled interval between C and T1.

tory scenes. For instance, the median duration of short segmental cues in natural

speech, such as unstressed vowels and consonants, is about 70ms [108]. This is

longer than the minimal duration of 20ms required for observing context effects.

Conversely, a persistence of 32s as observed is enough to accommodate prosodic

cues [108] and even pauses between sentences. Similar time scales may be found

for music [109]. The time scales covered by the context effects thus encompass

those typical of speech and music.

4.2.2.4 Generalization over frequency scales

The individual pure tones constitutive of a Shepard tone are octave-related: ratios

of their frequencies are powers of 2. The octave interval is fundamental to the def-

inition of the pitch chroma [110] but Shepard tones can be generalized to arbitrary

intervals. Is the context effect tied to the octave interval? To answer this ques-

tion, the first contextual experiment with a single context tone (as described in sec.

4.2.2.1) was reproduced using Shepard-like tones with intervals of 1
2 ,1 and 2 oc-

taves. The shape of the bias was preserved irrespective of the scale as shown in Fig.

4.3, demonstrating the invariance of the context effect to the interval. Results of this

experiments were separately reported in [111].

So far, highly-constrained Shepard-like complex tones were used as a tool to

probe and highlight contextual processing, but it was important to test whether the
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observed effects could generalize to other types of sounds. In another experiment,

sounds with as little constraints as possible with respect to their frequency content

were used: sounds with completely random spectral components. The density of

the random spectra was systematically varied, from very dense with approximately

8 tones per octave, to very sparse with approximately 0.3 tones per octave. The

only constraint was to enforce ambiguous frequency shifts in the final test pair, as

ambiguity in this test pair was critical to the paradigm being sensitive to context

effects.

The stimuli are illustrated in Fig. 4.4e. Context sequences were constructed

so that frequency components of the context would be expected to favor only one

direction of shift within the test pair (this expected direction of shift encompasses

all the context tones). Results showed that all random spectral stimuli produced a

large bias, from the sparsest to the densest, with a decrease for the densest condition

(Fig. 4.4f).

The context effect was observed for random spectra stimuli, which were com-

pletely different form the Shepard tones used so far. Moreover, the effect was ro-

bust when tested over different frequency scales, from very sparse sounds to very

dense sounds. It is likely that in the densest case of 8 components per octave, which

showed a decline of the magnitude of effect, the overall spectral pattern was starting

to become unresolved within auditory cortex [112]. The only limit for the context

effect in terms of frequency content thus seems to be to stimulate non-overlapping

frequency regions. A similar robustness to spectral scale was found in the standard

speech contrast effect [113].

This generalization to arbitrary sounds again suggests that the mechanisms

underlying the context effect could apply to typical natural auditory scenes. Given

that the context effect was just as strong for random spectra as for Shepard tones, the

spectral shape of the sounds should not matter at all. The limiting factor seems to

be spectral density, and these results show that at least the first 8 harmonics of any

periodic sound, such as the voiced parts of speech or musical instrument sounds,

would fall within the existence region of the context effect.
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Figure 4.4: Generalization over time and frequency scales. (a) Example trial testing the ef-
fect of the duration of a single context tone. (b) The mean P(Bias) is displayed
as a function of the context tone duration (n = 10 listeners). In the baseline
condition without a context tone, P(T1H) is displayed. (c) Example trial test-
ing the effect of a silent gap between context and test. (d) The mean P(Bias)
is displayed as a function of the C-T1 silent gap (n = 10 listeners). Individual
listeners are shown by gray lines. (e) Example trial testing random spectra.
Components of T2 were distributed randomly, but each exactly in-between two
components of T1. The context tones components were restricted to favor only
one possible direction of shift between T1 and T2. Dotted lines represent one
frequency “cycle” of the stimulus, they would be equally spaced at one octave
for Shepard tones. (f) The mean P(Bias) is shown as a function of the number
of components per octave (n = 10 listeners).

4.2.2.5 Hysteresis

When Shepard tones are presented in ordered sequence of increasing or decreasing

intervals, a strong hysteresis effect was reported by the same authors [45]. The task

involved the sequential presentation of pairs of Shepard tones with a fixed standard

reference tone and a tone of either increasing or decreasing interval relative to the

reference tone, with a 1st increase (resp. decrease) at each appearance from 1st to

11st. The order of presentation within the tone was randomized so that the hystere-

sis could not be confounded with a response bias. It was found that in the upward

(resp. downward) sequence, the sequential presentation shifted the interval of sub-

jective ambiguity from 6st to 10st (resp. 2st), a classical signature of hysteresis. A

condition where increasing tones were shuffled was also conducted as a compari-
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Figure 4.5: Results for random, increasing, and decreasing presentation orders from [45].
Probability standard higher (P(SH)) as a function of the interval between the
standard and comparison tones. Fitted curves are shown for the random (middle
curve), increasing (rightward-facing arrow), and decreasing (leftward-facing
arrow) conditions, with the shaded areas displaying the standard errors of the
means.

son. No hysteresis was found in this random condition. A summary of subject’s

behavior in all 3 conditions is shown in Figure 4.5.

4.2.3 Previous attempts at explaining the contextual effect

Two studies attempted to provide a causal understanding of the contextual effects

reported here.

4.2.3.1 Neural decoding

A first study explored if the biasing effect of context could be read out from early

sensory cortex in ferrets [114]. The authors recorded neural activity in auditory

cortex while they listened to isolated Shepard tones of various chroma. They then

regressed the pitch chroma on the recorded neural activity. The key manipulation

was then to predict the pitch chroma from the neural activity resulting from the sen-

sory experience of Shepard tones closely following a context as in the single context

tone psychophysical experiment. Given the attractive nature of the behavioral result

in humans, and the working hypothesis that the shift decisions in human were the

result of a comparison of encoded chroma, the authors expected this contraction to
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be reflected in the predicted pitch chroma. Their prediction was that the decoded

chroma would be attracted towards the chroma of the context. The opposite turned

out to be true: the decoded pitch chroma was pushed away from the chroma of

the context. This left the link between psychophysical phenomenon and its neural

correlates unexplained.

4.2.3.2 Neuro-mechanistic (bottom-up) model

A second study proposed a “neuro-mechanistic” model of the biasing effect of con-

text [115]. The model is based on the assumption of the existence of a neural popu-

lation encoding of frequency shifts and of its role in shift perception. This assump-

tion is motivated by psychophysical studies revealing the existence and properties of

“frequency shift detectors”[116, 117, 40] and physiological evidence for tonotopic

maps of direction selective neurons in auditory cortex [118].

The model describes the dynamical evolution of the firing rates of a recurrent

neural network - composed of excitatory and inhibitory populations - as a system

of first order non-linear differential equations in the spirit of the Wilson and Cowan

model [119]. The network contains two tonotopically organized, excitatory pop-

ulations, Eup and Edown , that respond preferentially to ascending or descending

stimuli in pitch, respectively. These preferences are generated by a third inhibitory

population I (also tonotopically organized) that provides inhibition asymmetric in

frequency to the two populations (see Fig. 4.6). The three populations have the

same tonotopic external input: input tones are modelled as symmetric bump of ex-

citation centered on the tone frequencies on the log-frequency axis.

As an example to understand the direction selectivity, input from the second

tone of an ascending tone pair will fall in a region inhibited by the first tone in the

downward population, but left unchanged by the first tone in the upward population.

To model the long-term effects of contextual tones, a slow facilitation of inhibitory

synaptic weights is added: tonotopic regions that were previously inhibited are more

inhibited later on by similar inputs. Essentially the model relies on the separation

of two timescales: the fast inhibition leads to a direction-selective population for

pairs of closely followed tones while the slow facilitation enhances and biases the
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Figure 4.6: Neuro-mechanistic model (Huang et al)[115]. The network model consists of
two excitatory populations ( Eup and Edown ) and an inhibitory population (I),
tonotopically organized. The asymmetric inhibitory feedback leads to an as-
cending/descending frequency change preference for the Eup and Edown pop-
ulations, respectively. Each unit is a local subpopulation, positioned at its
characteristic frequency (CF). Red arrows signify recurrent excitation and blue
arrows inhibition. The subset of the connections shown illustrates the architec-
ture’s qualitative nature: the synaptic footprints from E to E and from E to I
are narrow and symmetric; from I to E the footprint is broad and asymmetric.

fast inhibition.

This model can reproduce many aspect of the psychophysical results presented

so far. These predictions are described in details in [115, 111]. Here I describe two

predictions where its predictions do not match the observed psychophysical results,

or where the predictions do not appear satisfying.

• Using fixed tuning of frequency shift detector cannot explain the generaliza-

tion over frequency scales. Indeed, when the interval between 2 consecutive

frequency components gets large, inhibition following the first tone may have

a local effect on the network around that does not extend as far as to bias the

activation due to the presentation of the first tone. This model would pre-

dict no bias for the conditions with large intervals (bigger than octave) of the

experiment described in 4.2.2.4.

• The model can explain the effect of past stimuli on perceptual judgements up

to durations set by a parameter controlling the decay of the synaptic facili-

tation of inhibition which to my knowledge has not been observed in neural

systems. In [115], it is set to 2 seconds which would not explain the persis-

tence of the bias for up to more than 30 seconds as reported in [48]. This
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parameter could be set to a larger value but it is then unclear which biologi-

cal mechanisms could support such a long facilitation. However, timescales

of learning and adaptation in biological neural networks and their underly-

ing mechanisms are still largely unknown so the long time-scale used in [48]

might well turn out to be realistic.

In the next section, I will explain the motivation and the modelling approach

I took to explain the perceptual phenomena. Instead of a bottom-up approach, I

took a normative approach explaining the bias as the consequence of the resolution

of a computational problem: the pre-perceptual tracking of components of auditory

scenes.

4.3 Computational model of pre-perceptual group-

ing

4.3.1 Motivation

What computational function might be served by the kind of contextual processing

revealed by the behavioral biasing effects? Many otherwise surprising perceptual

phenomena may arise from computational principles that reflect expectations de-

rived from learned statistical properties of the natural world [6]. I constructed and

simulated an inferential model to ask whether the same might be true of the context

effects documented earlier.

The feature that listeners reported in those experiments – the direction of pitch

shifts – necessarily depends on the comparison of sounds over time. Because the

context effects were observed for random-spectra stimuli (Fig. 4.4f), which do

not produce a unitary pitch percept, it is likely that listeners reported frequency

shifts between successive frequency components. The core idea of my model was

that prior context may inform which successive frequency components were bound

together, and therefore, which successive components were compared to estimate

perceptual features such as pitch-shifts. The way prior context informed temporal

binding was by assuming some degree of spectro-temporal continuity in the acous-

tics of sound sources: current frequency components are likely to be followed by
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Figure 4.7: Auditory Stream segregation in a cycle of six tones. From Bregman [120] The
sequence used in this example consists of three high and three low tones in a
six-tone repeating cycle. Each of the high tones (H1, H2, H3) and the low tones
(L1, L2, L3) has a slightly different pitch. The order is H1, L1, H2, L2, H3,
L3, .... An alternation of high and low tones is heard when the cycle is played
slowly. Two ’streams’ of sound, one formed of high tones and the other of low
ones, each with its own melody, as if two instruments, a high and a low one,
were playing along together is heard when the cycle is played fast. In both case,
dashed lined reflect the perceptual organisation of the auditory scene.

future components at the same or nearby frequencies, because of the persistence in

the characteristics of sound sources. This assumption is reminiscent of a qualitative

explanation of streaming in auditory scene analysis [120, 121]: nearby elements in

time and frequency are bound together to form auditory objects. This can be thought

of as analogous to the formation of a visual contour by connecting edges. My as-

sumption is that a similar process might be happening at a pre-perceptual level and

for simple auditory features such as pure tones.

It can already be seen that this simple idea qualitatively accounts for the con-

text effects, as the pitch direction reported by listeners always maximized spectro-

temporal continuity (Fig. 4.2b)[45, 46, 101].

4.3.2 Model description

This hypothesized process was implemented as inference within a probabilistic gen-

erative model of auditory scenes (Fig 4.9). Inference in this model took as input a

set of frequencies at different times, and assigned each observed frequency to what

I termed a “track”. In the generative framework, the log-frequencies of individ-
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ual components were taken to be normally distributed with variance σ2
track around

the center frequency associated with a track. The center frequency of each track

could evolve slowly through time. I also assumed that the internal representation

of the frequency of each component was independently corrupted by sensory noise,

with variance σsens (d) = σsens
√

d0/d inversely proportional to the duration d of

the tone, with d0 an arbitrary constant (See appendix A for a justification). The two

variances, σ2
track and σ2

sens, were the two free parameters of the model.

Responses to experimental stimuli were simulated by inferring the evolution

of the model tracks, starting from the first context tone and ending with the final

test tone. Tracks were initialized for each component of the first context tone, with

a normal posterior belief about each center frequency, the mean of which was set

to the (noise-corrupted) component frequency and the variance of which was set to

σ2
c = σ2

sens +σ2
track.

Inference for each subsequent tone then followed two steps: (1) the noisy com-

ponent tones were probabilistically assigned to the tracks, in proportion to their

probabilities of generation from them; (2) beliefs about the track center frequen-

cies were updated, according to the evidence provided by the assigned compo-

nents weighted by their probabilities of assignment. Formally, this approach cor-

responded to mean-field filtering in a factorial hidden Markov model [122]. These

filtering steps were iterated for each tone in stimulus sequence. To compare the

model with behavioral data, I finally predicted the perceived pitch shift between

test tones by summing the shifts between every possible combination of test tone

components, weighted by the inferred probability that the combination originated

within the same track. The predicted pitch shifts thus reflected track assignments

carried over from the first tone of the context sequence, and favored pitch shifts

within tracks (Fig 4.9).

The model processed sound sequences in three stages: initialization, tracking,

and construction of the overall shift percept. I describe each of these steps more

formally below along with the fitting procedure used.
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Figure 4.8: Graphical model of the generative process assumed to underlie auditory scenes
is displayed. Arrows denote statistical conditional dependencies. Horizontal ar-
rows describe the temporal continuity of tracks (T) that are assumed to generate
the spectro-temporal components (C) constituting the scene. Each component
belongs to a single track whose identity (η) is inferred.

4.3.2.1 Generative model

Assumptions of spectro-temporal continuity of tracks are captured in the structure

and parameterization of a generative model for auditory scenes. The model is a

factorial hidden Markov model [122]. Variables in the model are (1) track means

T (i)
t where t indexes time and i the identity of the track, (2) chords Ct whose indi-

vidual components C( j)
t are pure tones, (3) for each tone C( j)

t , its originating track

η
( j)
t . In the model, the track means evolve independently in time according to a

random walk. Tones are independently drawn according to a Gaussian distribution

centered at their randomly sampled group mean and with a fixed standard deviation

corresponding to the typical group spread.

More formally, the hierarchical generative model of the scene can be written

as

• p(T (i)
0 )∼N

(
T (i)

0 ; .,σ2
track +σ2

sens

)
: the prior on track mean, where the mean

depends on tone that initiates the track, as described in the next section.

• η
(i)
t ∼ Discrete(π) : prior on track attribution πi ∝ 1

• C( j)
t |T (1..K)

t ,ηt = k ∼N
(

C( j)
t ;T (k)

t ,σ2
track +σ2

sens

)
: tone observation condi-

tional on track identity

• T (k)
t+T |T

(k)
t ∼N

(
T (k)

t+T ;T (k)
t ,γ2

)
: random drift in time of the track mean

A graphical representation of this generative is given in Figure 4.8.
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Figure 4.9: Probabilistic model. A track (color coded) is instantiated for each of the com-
ponent of the first context tone. Track means (dashed lines) are updated after
each attribution for subsequent context tones. The colored patch indicates the
standard deviation of the underlying generative process. An attribution step
is illustrated for the 3rd tone of the context sequence (black arrows); arrow
weights indicate the probability of attribution for each stream. Using the same
procedure, the final test tones components are attributed. Perceptual features
(here, pitch shifts Φi) are finally computed within tracks. Green arrows repre-
sent all possible bindings from one component tone of T1 to component tones of
T2; arrows thickness represents the likelihood that this binding was generated
by the green track. The most likely binding correspond to a pitch shifts en-
compassing the context tone components, consistent with the perceptual bias.

4.3.2.2 Parameters and Initialization

When a chord consisting of several components is given as input to the model, it

initiates one track per component tone, but maintains uncertainty in the form of a

Gaussian distribution about the central frequency of the track. The distribution is

centered on the observed tone frequency and has a variance that is equal to the total

variance that would be expected in the sensed frequencies of tones associated with

that track. This variance is the sum of two parts σ2
c = σ2

track+σ2
sens (d); the variance

of acoustic frequencies associated with any one track (σ2
track) and the variance of

the sensory noise that corrupts the sensed frequency (σ2
sens (d)), depending on the

tone duration, as described earlier.
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4.3.2.3 Tracking

As new chords are input into the model, the component tones are attributed to the

different tracks. This attribution process corresponds to inferring the underlying

track assumed to be associated with each tone. It requires the ability to predict the

continuation of each track and to assess the likelihood of new observation to belong

to this track. Such tracking mechanisms and how there dependence on distance

between tracks have been reported in studies of attentional tracking of a source in

sound mixture [123]. Here I assume that multiple tracks are inferred in parallel in

a process akin to multi-target tracking with multifocal attention in vision [124]. In

the auditory domain, there is evidence for the ability to track multiple sound source

in music but less so in more challenging natural situations [125] The belief about

the mean of each track is then updated to incorporate the new observed frequencies.

Tone attribution is a “soft” process, each tone is partly attributed to all tracks with

a probabilistic weighting called a “responsibility”. Tracks closer in frequency to a

given component tone assume greater responsibility for it. Specifically, the respon-

sibility is given by the probability under the model that a given tone with frequency

g( j) might have arisen from the distribution of frequencies associated with track i.

I introduce an attribution label η( j) which is the (unknowable) identity of the track

which actually generated tone j. Then the responsibility is just the probability that

η( j) = i. That is, if ongoing beliefs concerning the mean frequency are defined by{{
µ
(1)
t ,σ

(1)
t

}
, . . . ,

{
µ
(K)
t ,σ

(K)
t

}}
and the chord c is presented, I compute for each

tone j and each track i, the responsibility ri
j as follows.

ri
j = p

(
η
( j) = i|g( j),

{
µ
(i)
t ,σ

(i)
t

})
∝ N

(
g j; µ

(i)
t ,σ2

c

)
exp

(
−1

2
σ
(i)2
t

σ2
c

)
Once attribution has taken place, the mean frequency of each track is updated with

the frequencies of all tones, weighted by the responsibilities. I update the beliefs

about the ongoing tracks as follows: for each track i, I compute the effective number

of tones attributed to that track, n(i) = ∑k ri
k and the weighted mean frequency of the
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tones attributed to that track, v(i)

v(i) =
1
ni

∑
k

ri
kgk

Mean and variance of the belief about track i are updated as

σ
(i)2
t ←

(
1

σ
(i)2
t

+
n(i)

σ2
c

)−1

µ
(i)
t ←

(
1

σ
(i)2
t

+
ni

σ2
c

)−1(
µ
(i)
t

σ
(i)2
t

+
v(i)

σ2
c

)

Finally, since the prior belief about the dynamics of track means is that of a

Wiener Process, variances of the beliefs about each tracks is incremented by γ2δ t

where δ t is the inter-onset interval between Shepard tones and γ is the assumed

rate of change of track means. A wide range of values led to quantitatively similar

fits for slow time-scales of variation up to approximately a 10th of an octave per

second. These correspond to slow variations relative to the overall duration of the

context and the test pair. For this reason, I set this parameter to zero for all the

results reported.

This process of attribution and updating is repeated for all remaining stimuli

in the trial. Full detail of the derivation of the filtering updates can be found in

Appendix B.

4.3.2.4 Shift percept construction

Finally, I modelled the behavioral response of the listener when judging the direc-

tion of pitch shift between a pair of consecutive chords. Frequency shifts were com-

puted locally within each track, and these local shifts were then combined across

tracks to build a global percept of pitch change. The local frequency shift within a

track was taken to be the sum over all possible oriented shifts between pairs of con-

secutive tones in the two chords, weighted by how likely they were to both belong

to that track. For track i,

φi = ∑
j1, j2

ri
j1ri

j2

(
g( j2)−g( j1)

)
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The global shift percept was then simply the sum of the track-local shifts:

φ = ∑
i

φi

A binary percept was constructed by thresholding φ at 0. When φ is positive, a

rising pattern is predicted, and when φ is negative, a falling pattern is predicted.

4.3.3 Results

4.3.3.1 Fitting procedure

I generated model predictions for psychophysical experiments, where Shepard tone

pairs were presented without context (Experiment 1), where one context tone was

presented before the ambiguous tone pair (Experiment 2), where several context

tones were presented (Experiment 3) and where the duration of one context tone was

varied (Experiment 4). In order to assess the performance of the model relative to

the behavioral data, I estimated the maximum-likelihood parameters of the model.

Participants performed different subsets of the full set of experiments, with four

participants having completed Experiments 1, 2, and 4; seven having completed

Experiments 1 and 2, and six participants having completed only Experiment 4. I

took full advantage of the data available by estimating one set of the parameters,

σsens and σtrack, for each individual using the data from all the experiments that the

listener completed. The log likelihood provided an estimate of the fit of the model

predictions to the psychophysical data. The parameter σtrack was estimated in the

range of 0.1-2 (up to two octaves) and σsens was estimated in the range of 0.01-0.5

(up to half an octave). As can be seen in Figure 4.10, the value of the parameter

σtrack has little effect on the fit to the data up to 0.5 octaves, which is the frequency

span of the context region. Therefore, to generate the simulations reported here, an

arbitrary value in this range was selected for σtrack, which was fixed at 0.16 across

participants, and the parameter σsens was selected to maximize the likelihood of

each individual response for all tasks and conditions. An estimate of the uncertainty

in the parameter value for σsens was provided by the 95% confidence interval around

the mode of the normalized likelihood, displayed in Figure 4.11.



4.3. Computational model of pre-perceptual grouping 80

4.3.3.2 Results and interpretation

The resulting model predictions are shown superimposed on the behavioral data

in Figs. 4.2 and 4.4, and in most cases the confidence intervals between behavior

and model overlap. The model thus provides a single interpretative framework for

most of the behavioral data, which I now detail. Without context, tracks were ini-

tialized at the components of the first test tone T1, and the highest probability was

for each track to bind the component in the following tone T2 that was closest in

log-frequency, hence favoring the pitch shift over the smallest frequency distance

between T1 and T2 (Fig. 4.2b). In the ambiguous case corresponding to an inter-

val of 6 st, each component of T2 became equidistant on average from two tracks

originating from T1; the symmetry was broken randomly by the simulated sensory

noise, and so either shift direction was favored equally often (Fig. 4.2b). Intro-

ducing a context tone made it more likely that the tracks initiated by the context

would capture their neighboring T1 and T2 components, and thus favor a pitch shift

encompassing the context frequency region. The predicted bias was strongest when

the context components, and thus prior track centers, fell halfway between the com-

ponents of T1 and T2 as then the probability that the sensory noise would disrupt the

context-induced tracks was smallest (Fig. 4.2d). Adding context tones increased the

confidence in the track mean value (and their influence was more likely to average

around the half-way point), thus increasing confidence in the assignment of T1 and

T2 tones, consistent with the build-up of the effect with the number of context tones

(Fig. 4.2f). The decrease in assumed sensory noise associated with longer tones

was finally consistent with the effect of tone duration on context (Fig. 4.4b).

4.3.3.3 Model Predictions for the other experimental conditions

Four of the experiments presented in 4.2 were left out of my model based analysis

and discussion: (1) the case of increasingly long delays between the context and the

test pair (2) the case of uneven and complex tones used to build both the context and

the test pair. (3) the case of even but non octave Shepard-like tones used to build

both the context and the test pair. (4) the hysteresis effect.

My model was derived at a computational level and it’s parameters constitutes
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beliefs about statistical properties of the environment. In some of the conditions

listed above, these believes are too simple, in the sense that they no longer reflect

the statistical properties of the stimuli well enough.

Here, I discuss how my computational model can either readily account for

these results or how it would need to be extended to account them. In all these

conditions, the stimuli are organised in ’tracks’ of bands or well separated bands

of energy in the spectro-temporal domain. Intuitively, my account of the behav-

ior in these conditions is similar to that given for the main experiment: the model

successfully performs tracking and the expectations build from track bias the judg-

ment of ambiguous (or close to ambiguous) test pairs. All the extensions described

here include the initial model as a separate case. A single of extension of the orig-

inal model could in theory explain all conditions at once, but this possibility is not

explored here.

(1) Long delays

The only source of stochasticity in the model in the sensory noise. Longer delays

after the context lead to more uncertain (’broader’) tracks at the time the test pair

is presented. What drives the bias in the model is the relative closeness of T1 to the

tracks infered from the context. This is left unchange by long delay. Essentially, the

model predicts a bias that would persist for very long time, until the tracks are so

broad (covering many octaves) they almost completely overlap.

A first possible change to the model would be to continuously inject an inde-

pendent memory noise in the model’s beliefs about tracks. This would make the

model slowly ’forget’ about the context as noise is added (with long context-test

delays) while maintaining unbiased performance unchanged. A second possible

change to the model would be to add a mechanism whereby uncertain tracks would

have a probability to disappear. Indeed in the model, neither creation nor deletion

of tracks is directly addressed although this is a critical component of any serious

scence analysis algorithm. With such a time dependent deletion mechanism, the

bias would decrease with longer context-test delays)
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(2) Uneven complex tones and (3) Shepard-like tones

For simplicity, the model presented assumes a shared fixed generative width for

tracks σtrack. This was convenient because that is indeed how the ’underlying’

tracks are in most of the contexts I designed with Shepard tones. When using uneven

complex tones (with different consecutive intervals instead of octave ones between

consecutive pure tones in the mix), the ’underlying’ tracks would each have a dif-

ferent typical width. An extension that would accomodate for these different widths

and unknown would be for the model to also infer the width in an online fashion.

Such a model has been explored but is not included in the thesis. It can account for

the observed biases in both the uneven and the even condition. It also naturally ac-

counts for the biases reported in the case of pairs of ambiguous non-octave Shepard

tones.

(1) Hysteresis

The results for the hysteresis experiment are short term effects where the last few

tones set the bias. One can see the ’contexts’ in this task as multiple ’underlying’

tracks with gradually increasing means. My model would readily perform tracking

for these contexts and explain the observed response patterns. One parameter γ ,

the assumed rate of change of track means, might need to be adjusted to match the

faster rate of change of the ’underlying’ track means in this task.

4.3.3.4 Discussion

Using a single pair of parameters per subject, I achieved excellent quantitative

agreement across the range of basic experiments. To maintain focus on the core

mechanism, I did not attempt to model the data for the gap duration and random

spectrum experiments, which would have required extensions to the computational

model as described in 4.3.3.3. The success of the simple version of the model

nevertheless supports the hypothesis that the context effect was based on tempo-

ral binding processes, enforcing simple statistical constraints of spectro-temporal

continuity. Models with similar structure have been suggested before for auditory

scene analysis [126, 127]. Indeed most auditory scenes are mixture of auditory ob-
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jects separated in some feature space and in these models, online inference of the

objects amounts to tracking. The present framework is different in what it aims to

represent: the tracks identified by the model here do not need to correspond to per-

ceptually separated streams, which can be attended to at will [128]. Instead, many

parallel tracks may be formed, implicitly, to guide the estimation of task-relevant

perceptual features. The model I proposed here is computational and agnostic about

the implementation. Its main purpose is to propose an abstract understanding of the

function that causes the observed patterns of biases. This understanding allows to

create bridges with other fields (auditory scene analysis), to form and explore alter-

native predictions to these that would stem from a model of a different nature, for

example a mechanistic one.

4.4 Conclusion

Behavioral data showing that prior context can have a profound influence on a sim-

ple auditory judgement of pitch shift was reported. Perceptual decisions could be

fully swayed one way or another depending on prior context, for physically iden-

tical sounds and for pitch shift values far from threshold. The existence region

of the context effect, for time scales and spectral scales, was shown to encompass

the prevalent statistics of natural auditory scenes. A probabilistic model provided

a functional interpretation for the context effects, in the form of temporal binding

under the constraint of spectro-temporal continuity.

My functional interpretation of the context effect is cast in terms of binding,

and not auditory streaming, in spite of the apparent resemblance between the two

notions [120, 129]. This is because the behavioral effect was observed in condi-

tions not usually associated with subjective streaming. An auditory stream takes

some time to build up [130], and it breaks apart for long pauses [120] or large fre-

quency discontinuities [121]. In contrast, contextual effects in very short sequences,

after very long silent intervals, and in the perception of very large frequency shifts

were observed. The current results thus reveal a form of binding process outside

of the parameter range of subjective streaming. This generalization is needed when
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Figure 4.10: Log-likelihood of the psychophysical data as a function of model parameters,
summed across participants. A broad range of parameters provides a good
fit to the data. Dashed lines in black represent iso-value curves of the log-
likelihood. The side panels represent the log-likelihood along the two white
dashed lines in the main panel. In the left panel, the parameter σsens is fixed
to the best-fitting value. For the parameter σtrack, values up to 0.5 provided a
similar fit. Therefore, σtrack was set to an arbitrary value in this range (0.16)
in the bottom panel.

one considers the situation faced by auditory perception. Even in the simplest case

of a single auditory source, frequency components will be encoded by independent

neural populations at the peripheral level. Because sound production is by nature

dynamic, there will also be temporal gaps between those components. This in-

troduces an inherent ambiguity: which component should be compared to which

to estimate perceptual features? I suggest that the auditory system keeps track of

the parallel evolution of frequency components in a way that maximizes continuity.

This idea has strong similarities with what has been termed “serial dependency” in

vision [32], and is motivated by the same a priori continuity constraints on object

persistence in the real world [131].
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Figure 4.11: A bar chart displays best-fitting parameter for individual subjects. The er-
ror bars display the narrowest 95% confidence interval around the mode of
the normalized likelihood, which provide an estimate of the estimation uncer-
tainty.



Chapter 5

Sensory history affects perception

through online updating of prior

expectations

Collaboration statement

The work presented in this chapter is the result of a collaboration between, on one

hand, Itay Lieder and Merav Ahissar from the Hebrew University (Jerusalem, Israel)

and on the other hand Vincent Adam and Maneesh Sahani from the Gatsby Unit,

UCL (London, UK). Psychophysical experiments were carried out by the Israeli

team. Models and model-based analysis were carried out by the London team.

5.1 Introduction

As previously discussed in the general introduction 1.3 and in Chapter 4, perception

may be influenced by past stimuli over timescales that range from milliseconds to

hours. Here, we studied the impact of recent and long-term stimulus history on the

“contraction bias”. When asked to report which of two tones separated by brief

silence is higher, subjects behave as though they hear the earlier tone “contracted”

in frequency towards a combination of recently presented stimulus frequencies, and

the mean of the overall distribution of tones used in the experiment [44]. It has

been proposed that the long-term contraction bias arises normatively, through the
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combination of a noisy memory trace left by the first tone with a prior belief based

on the experimental stimulus distribution; a suggestion consistent with increased

bias with delay and cognitive load [132, 133]. How detailed is this prior belief, how

is it formed, and how does it interact with the effects of recent stimuli?

We measured two-tone frequency discriminations made against different back-

ground distributions of stimuli. Using a novel non-linear regression framework, we

found that while one component of the bias reflected the overall stimulus distribu-

tion in detail, a second component revealed a non-linear influence of recent stimuli

that depended on subjects’ sensitivity in the task, but not on the sampling distribu-

tion used in the task. We reconciled these findings within a single coherent model,

wherein subjects’ noisy percepts of tone frequency combine with a single prior that

they construct online based on their own variable and uncertain experience, eventu-

ally leading to an approximation to the experimental distribution. This suggests that

both short- and long-term biases arise through a single mechanism, which is tuned

to optimise perception in uncertain conditions.

5.2 Contraction bias and recency effects

One of the most commonly reported types of bias in psychophysical tasks is the

“contraction bias”. This bias observed in delayed matching or discrimination tasks

describes the tendency of a subject to overestimate (resp. underestimate) a stimulus

when it is in the upper end (resp. lower end) of the overall stimulus distribution

in effect contracting its value towards the center. It was first reported in a delayed

matching task [134], where a first card had to be matched in size, after a delay, to one

of many cards of different sizes presented together. In this experiment, small cards

were matched to too big cards while large cards were matched to too small ones.

This tendency was later found to accurately describe behavior in simple perceptual

tasks, such as identification [135, 136, 20], detection [22, 20, 137] and classification

[138]. Its effects are also observed in many two alternative delayed discrimination

tasks [139, 140] where the same under or over estimation processes qualitatively

explains the direction of the observed biases. This form of the bias has been shown
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to be tied to the sampling distribution of the stimuli, with narrower (uniform) dis-

tributions leading to smaller biases and the ’center of attraction’ closely following

the mean of the distribution [139].

Evidence for contraction of the first stimulus in perceptual tasks has been found

across domains and species. In the visual domain it was demonstrated for color

discrimination [141], bar-length matching [133], duration discrimination [142], fre-

quency discrimination [143] and bar-length discrimination [132]. In the auditory

domain, it was demonstrated for intensity discrimination [139], frequency discrimi-

nation [44, 144, 145], duration discrimination [142, 146]. It has also been observed

in tactile discrimination [147], and in non-human subjects such as rats [147] and

monkeys [148].

Aside from stimulus distribution alone, several factors have been shown to

influence the contraction bias. For fixed durations of stimulus presentation, the

bias increases in magnitude with the delay between the first and the second stimuli

[141, 139, 146] or when a competitive task is to be solved during the delay [132].

Beyond the effect of overall stimulus statistics, many studies have suggested

that the most recent trials affect decision more strongly than more remote ones

[44, 32, 136, 149, 42, 142].

5.2.1 Models of the contraction bias

In this section, I present two approaches to the quantitative study of the bias in

delayed discrimination tasks. I consider the case of delayed 2-tone discrimination

tasks consisting in several trials where a first pure tone of log-frequency f1 has to

be compared to a second tone of log-frequency f2 presented after a short delay.

Subjects participating in such task are asked to report whether or not “ f1 > f2".

Regression studies aim to understand and quantify which aspects of sensory

history are predictive of subjects’ decisions. Ideal observer (IO) models explicitly

represent noise and uncertainty due to assumed sensory and memory processes and

their role in the information processing from stimuli to decisions.
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5.2.1.1 Regression models

Previous work explained the role of sensory history in perceptual tasks using re-

gression models. This approach builds on the classical models of signal detection

theory where a subject’s decision probability is modelled as p(y = 1|δ ) = φ (αδ )

where the only covariate δ = f1− f2 is a signed measure of difficulty of the trial,

and the parameter α reflects a subject’s precision, or discrimination ability, and φ

is a monotonous function from R to [0,1] such as the logistic function and it may

include lapse rates [150].

The effect of past sensory history on decisions has been introduced into this

framework by incorporating a linear history dependent term into the argument:

p(y = 1|δ ,h) = φ
(
αδ +β T ψ (h)

)
. Here ψ denotes a set of hand-crafted features

assumed to be relevant (i.e. predictive of subjects decisions)[151, 44], and β denot-

ing their associated weight in the regressor.

Such models have been successful in revealing the overall magnitude and

timescale of the effect of sensory history. However, when no strong a priori guides

the search of the relevant features ψ (h) that best explains observed behavioral data,

the space of features to explore is very large and a manual exploration of this space

is prohibitively costly.

One approach to alleviate the costly search could be to include a large number

of such features into the regression and impose sparsity constraint onto the solution

[152]. However, to be efficient in our context where the number of covariates is

small, this approach requires relatively strong assumptions about the solution to

guide the design of the features: (1) features need to be not too correlated and (2)

a sparse combination of these features need to approximate well the ’true’ solution.

We did not follow this approach.

In Section 5.4, having no a priori intuition about exactly what and how previous

sensory history biased perception, we instead take a non-parametric approach to

learn history-dependent features directly from subjects’ responses.
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5.2.1.2 Ideal Observer models

We focus on the normative model of Ashourian and Lowenstein [132] predicting

a contraction bias. In addition to a noisy transduction shared with models of dis-

crimination from signal detection theory [150], the authors assume a noisy working

memory that corrupts the representation of the first stimulus f1 to memorise. This

leads, at the time of decision, to different level of noise corrupting the two ele-

ments to be discriminated: f1 and f2. Provided with the additional knowledge of

the sampling distribution p( f ) and given the noisy representation f̃ of tone f , the

ideal decision combines information from the form of the noise p
(

f̃ | f
)

with the

sampling distribution p( f ) used as a prior.

We describe this approach in greater detail in section 5.5. Put simply, the opti-

mal solution involves for both tones, computing the posterior over the true stimulus

f given the noisy version f̃ and the prior p( f ). In mathematical terms, the posterior

over the stimulus value is

p
(

f | f̃
)

∝ p̂
(

f̃ | f
)

p( f )

that is, the product of the prior p( f ) and the likelihood p̂
(

f̃ | f
)

quantifying the

model representation of its uncertainty, reflecting a knowledge of the statistics of its

noise (see Fig. 5.10). For the example of a uniform prior, the effect of the prior is

to ’crop’ the likelihood, hence biasing the posterior towards the center of the prior.

Both tones’ posteriors are biased in the same direction, but more so in the case of the

first one given its higher uncertainty arising from the combination of both memory

and sensory noise. This difference leads to the perceptual bias.

Importantly, both the uncertainty p
(

f̃ | f
)

and the sampling distribution p( f )

can be manipulated by the experimenter allowing for detailed predictions. Indeed,

the authors in [132] found that an increase in the memory load during the interval

between the stimuli can be mapped onto an increase in the memory noise. The bias

is also directly dependent on the sampling distribution chosen by the experimenter.

The same authors ran multiple 2-length discrimination experiments where they var-

ied the position (but not the shape) of a uniform sampling distribution over lengths

and found that the pattern of contraction is translated as much as the sampling dis-
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Figure 5.1: Task design and covariates for regression analysis. Top: detail of a trial. Bot-
tom: At trial t, covariates capturing recent sensory history dτ are defined as the
frequency distance between the average of the tone frequencies at time t−τ and
the frequency of the first tone of the current trial. d∞ is the centered absolute
frequency of the first tone in the trial.

tribution.

As the authors of the study noted, “the extent to which the shape of the prior

distribution can be learned and utilized in Bayesian reasoning, however, awaits fu-

ture studies”. In section 5.5, we explore the question of how the prior distribution is

learned and show how the learning process we propose can explain recency biases

revealed in Section 5.4.

5.3 Task

5.3.1 Stimuli & feedback

Three 2-alternatives forced choice (2AFC) pure tone discrimination experiments

were conducted. These experiments were coded mainly in JavaScript and run using

a web-browser, with tones loaded and played using HTML 5.

In all experiments, the interstimulus interval (ISI) was set to 850ms, tone du-

ration was set to 120ms. The delay between a response and the presentation of the

first tone of the following trial, the trial onset, was set to 650ms. Following their re-

sponses, participants were given feedback, presented as a happy (resp. sad) smiley
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Figure 5.2: The mean centered stimulus distributions used in our three experiments: (red)
uniform with 2 octaves width, experiment 1, (green) bimodal, experiment 3,
(blue) uniform with 3 octaves width, experiment 2.

cartoon after a correct (resp. incorrect) answer. Furthermore, after the completion

of each block, they received information about their mean accuracy performance on

that block. This shared task design is depicted in Figure 5.1.

The absolute difference between the two tones log-frequencies | f1− f2| was

sampled uniformly within the range of 0.5− 10%. This difference was positive

or negative with equal probability. For 58 participants, tones were sampled log-

uniformly between 500 to 2000 Hz. For the remaining 72 participants, tones were

sampled log-uniformly between 400 and 1600 Hz (both ranges are exactly 2 oc-

taves wide). The second experiment was identical except for that tones were log-

uniformly sampled from 283-2263 Hz (3 octaves range). In the third experiment,

tones were sampled in a bimodal fashion. Tones were sampled from a mixture of

two non-overlapping log-uniform distributions: one with a range of 440-800 Hz and

the second one with a range of 1228-2295 Hz. On a given trial, one of the modes

was selected at random, with equal probability for both modes, and the first tone

was then sampled log-uniformly from within that mode. The stimulus distributions

used in the three experiments are shown in Figure 5.2.
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5.3.2 Participants

All participants in this study participated voluntarily via Amazon’s “Mechanical

Turk” web framework. They participated from the United States of America. Par-

ticipants with either an approval rate below 95% or a total number of HITs1 (human

intelligence task) of less than 1000 were not allowed. We emphasized that the ex-

periments must be performed: (1) using headphones and in a quiet environment,

(2) with either a laptop or a desktop computer and (3) only by people with good

hearing and ages ranging from 20 to 50 years old. They were given a payment of

$2 for 300 performed trials (corresponding to a duration of approximately 15-20

minutes). Each participant could only participate once. Respectively 130, 156 and

158 subjects participated in the first, second and third experiments.

5.3.3 Instructions and training

Subjects first had to give their age, gender and musical experience (in years of

practice). They were required to have headphones to participate or to abort the task

otherwise. To assert familiarty with the concept of pitch, subjects were given the

opportunity to freely engage with four clickable buttons ordered by the height of

the pitch they invoke. The pitch of the 4 buttons were respectively 660, 780, 1150

and 1520Hz covering a total of 1.2 octaves. They were asked to set the loudness to

a comfortable level during the training session. Then instructions were given about

the actual task as follows: "On each trial, two tones will be played consecutively:

tone 1→ tone 2. Then I ask: which of the two tones had the higher pitch?" Subjects

then performed the task for 30 training trials. The training was followed by a small

break, before the main task started.

5.3.4 Participants’ performance-based exclusion

We included subjects in our analyses depending on their performance on the tasks.

Mean accuracy was used as an indirect measure of the amout of bias information

in subjects’ responses. Intuitively, at one extreme of the performance axis, sub-

1On Amazon Mechanical Turk, a Human Intelligence Task, or HIT, is a question that needs an
answer. Account owners on the platform answer HITs and have a track record specifying the number
of HITs they have answered so far.
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jects who are too good make no mistake so the biasing effect of sensory history is

never revealed. At the other extreme, subjects who perform the worst are very noisy

and their response variability hides their biases. We excluded all subjects who had

a mean accuracy < 60% correct and ≥ 90%, excluding 62 (48%), 60 (38%), 71

(45%) participants for the 2-octaves uniform, 3-octaves uniform and Bimodal dis-

tributions respectively. These exclusion thresholds can be better understood after

reading our theoretical understanding of the sensory biases and their dependences

on performance (see Section 5.5.3.1). Inclusion statistics are reported in 5.1.

In our analyses, we binned subjects depending on their mean accuracy. Given

our stationary task design, this only makes sense if subjects are themselves sta-

tionary in their performance. To assess this directly from data, we quantified the

variability of performance at slow time scales by computing for each subject s a

variability score vs: the standard deviation of mean accuracies in consecutive win-

dows of 30 trials. This score is non zero both because subjects typically get better

during the task (mean accuracy difference for the first and last 100 trials is 0.05)

and because subjects are noisy. We considered an unusually high score as reflecting

a temporary drop of engagement in the task. Hence, we excluded subjects whose

score was four standard deviations higher than the population mean (across sub-

jects) resulting in the exclusions of 2 additional subjects for the 3-octaves distribu-

tions.

Because we did not record the precise timing of responses of subjects, we are

unable to exclude subjects based on single trial performance (for example, it would

be desirable to exclude trials following an unintended break).

5.3.5 Additional notes

Notes on the influence of training

Subject’s tone discrimination abilities are known to vary across people with musical

training leading to lower discrimination threshold [158]. However, we are not in-

terested in absolute performance. Instead we are interested in the systematic biases

and study the dependence of the bias on performance.
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Notes on equipment in online experimentation

For our data acquisition method to be valid, on each system our experiment is ran,

two quantities must have a low variability: (1) the latency between executing the

code to present a sound and that sound being presented, (2) the difference between

the played duration of a sound and its intended duration. Previous research sug-

gests that both these quantities have standard deviations below 1ms in a wide range

of common hardware configurations and web browsers [153, 154]. Hardware or

software configurations were not use as filters to exclude participants.

Subjects were asked to set the sound loundness to a confortable level through-

out the experiment. For subjects with normal hearing and for pures tones within

the range considered, confortable level are know to be in a range allowing good

performance [155]. There are know pitch-loudness interactions in pitch perception

[156, 157]. However, for fixed levels, these interactions are small for the levels and

frequency ranges considered.

5.4 A descriptive analysis using GAMs
We model the biasing effect of sensory history h on subjects’ decisions using a non

parametric model:

p(“ f1 > f2”|δ ,α,h) = φ (αδ +b(h))

This model falls in the family of Generalized Additive Models (GAM) [64]. In

all our GAM regression analyses we included a constant offset term to the additive

predictor. We do not show these offsets in the equations describing our models. In

all our analyses, the offset is never inferred as significantly different from 0, and our

additive predictors have zero mean.

5.4.1 Covariate description

From [44] we knew that both the very recent trials and the absolute position of the

first tone were important covariates to consider. We define the main covariate in trial

t to be δ t = f t
1− f t

2, the difference between the log-frequencies of the two tones of

that trial, accounting for the trial difficulty if there was no bias. To account for the
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effect of history, we use as additional covariates the frequency distance (in log Hz)

between the contracted tone f t
1 and the arithmetic average of both tones at trial t−τ ,

that is we define dτ = ft − 1
2

(
f t−τ

1 + f t−τ

2
)
. Considering the average effect of the

two tones of past trials rather than the individual effect of these tones is justified by

the fact that, because the task is set to be hard (small δ ) and the sampling ranges

wide, distances ft − f t−τ

1 and ft − f t−τ

2 ) are highly correlated. These covariates are

illustrated in Figure 5.1.

In addition to defining and using the covariates accounting for the influence of

recent trials, we also defined a special covariate to reflect the influence of absolute

position of the first tone. We center the covariate to yield d∞ = ft −〈 f 〉, where 〈 f 〉
is the mean of distribution of the tone log-frequencies. Covariates d1, ...,dτ ,d∞ are

illustrated in Figure 5.1.

5.4.2 Additivity assumption

Both technical and interpretability considerations led us to further assume an addi-

tive structure the bias: b(h) = ∑i bi (di)

On the technical side, inferring a joint function over the covariates b(d1, ...,d∞)

requires a very large number of data points (scaling as a power of the number of co-

variates) which we could not be gathered. The additive assumptions also makes it

possible to visualise and interpret the effect of the different covariates. This be-

comes harder if the functions act on more than two inputs. Interpretability comes

at the cost of restricting the expressivity of the model. With the assumed additive

structure, any interactions between variables are lost. In our analysis we systemat-

ically checked that the additivity assumption was not substantially wrong by infer-

ring pairwise interactions when possible.

5.4.3 Results

5.4.3.1 Subjects are biased by sensory history in a non-linear way

The most salient inter-individual difference is in accuracy. In our probit regression

setting, this maps into heterogenous values for the fitted parameters α . As a first

approximation, we set our model to have a different value of α for each subject
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(indexed s) and assumed the bias terms to be equal for all subjects.

p(y = 1|αs,δ ,b,d) = φ (αs
δ +b1 (d1)+b∞ (d∞))

We fit this regression model to the subject responses of Experiment 2 (3-

octave sampling distribution), including subjects whose overall accuracy fell within

[60%,90%[. Inclusion statistics are given in table 5.1.

We focused on this experiment both because it is the task in which covariates

d1 and d∞ are the least correlated, and because we have the largest number of par-

ticipants in this case. Results shown in Figure 5.3 reveal that the biasing functions

are non-linear and antisymmetric.

To assess the prediction gain achieved by using the different covariates and

by using non-linear functions rather than linear ones, we compute the relative 10-

fold cross-validated AUC (Area Under the ROC curve [150]) for 5 different biases:

no bias, bias described by linear functions (w1d1 +w∞d∞), 3 biases described by

non-linear functions (b1(d1), b∞(d∞) and b1(d1)+b∞(d∞) ).

Because the magnitude of biases are small and have no effect on most trials,

the predictive gain between a biased and unbiased model is small if predictive per-

formance is assessed on all trials. This is because both models explain most trials

equally well.

To further highlight the predictive gain of the different biases, we now focus on

the trials for which we expect a predictive gain. We select trials where the magnitude

of the history bias is larger than the magnitude of the predictor with no bias |b(h)|>
|αδ |, and where both favor opposite decisions b(h)αδ < 0.

Absolute and relative cross-validation results on both all and selected trials are

shown in Figure 5.4.

We found that predictive power was increased when using non-linear bias func-

tions and when both covariates were uses. In that case there was no loss in predic-

tive power when an additive structure was imposed. The predictive gains were also

larger by almost one order of magnitude when the AUC was calculated on subset of

trials where the gain was expected to be the most salient.
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Figure 5.3: Effective Precision and shared bias for Experiment 2 (3-octave sampling
range). Top: histogram of precisions σs = 1/αs. Middle: inferred biases
and standard error. b1 (d1) (blue), b∞ (d∞) (red). Bottom: Histogram of the
absolute magnitude of the induced biases in semitones, and median values.
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Figure 5.4: Absolute (left) and relative (right) cross validated AUC of GAM regression
models with different sensory history biases evaluated on either all (top) or a
subselection (bottom) of trials where the sensory biases are expected to drive
the decision most (Experiment 2).
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5.4.3.2 Sensory bias is stronger than response bias

Apart from stimulus history, response and feedback history might affect the dis-

criminations [159, 138, 160]. Unpublished observations suggested that a negative

feedback could promote a switching response, while a positive response might en-

courage perseveration with the last response. Irrespective of the feedback, subjects

might tend to choose the same response as in the previous trial, a phenomenon of-

ten referred to as response inertia. We sought to quantify the relative contribution

of past responses and feedback by explicitly adding terms to our additive predictor

capturing the intuitions described above.

Let yt−1 be the previous response and et−1 be the previous feedback. Both

variables take values in {−1,1}. We add the following 2 covariates to our predictor:

xr = yt−1 for the response bias, x f = yt−1et−1 for the feedback bias. Both covariates

were centered.

Following the same methodology as in the previous section, we compare dif-

ferent models with additive predictors including either or both response history co-

variates (x f ,xr) or sensory history covariates (d1, d∞). For each model, a separate fit

is done for each subject (all trials included). Having one model per subject means

there are fewer data points per model. To reduce the complexity of the models,

sensory biases are set to be linear (bx(dx) = wxdx for x ∈ {1,∞}). It was shown

in the previous section that such linear biases have higher predictive accuracy that

unbiased model for the dataset of Experiment 2)

All models compared that have a linear predictor are nested, with the most

complex model being:

p(yt = 1|α,δ t ,w,b,d) = φ
(
αδ

t +w1d1 +w∞d∞ +w f x f +wrxr
)

Still focusing on Experiment 2, results shown in Figure 5.5 reveals that, sen-

sory history biases have more predictive power than response or feedback history

biases (with the latter having little to no contribution to subject responses). The key

force driving the bias is therefore more the sensory history than the response and

feedback histories.
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Figure 5.5: Cross-validated likelihood, comparing linear models with sensory, response
and feedback history dependent biases on data from Experiment 2. All trials
are included and one model is fitted per subject.

5.4.3.3 Most recent sensory experience has the strongest influence

We have so far restricted our covariates to d1 and d∞. Previous results have reported

that preceding trials beyond the most recent might also influence responses [44].

Thus we considered terms for additional covariates related to sensory history up to

a lag of 5, leading to the following GAM model:

p
(
yt = 1|h

)
= φ

(
α

s
δ

t +b1
(
dt

1
)
+b2

(
dt

2
)
+b3

(
dt

3
)
+ ...+b∞

(
dt

∞
))

Figure 5.6(right) shows the inferred biasing function of each covariate. His-

togram of the function values taken on all trials are reported in Figure 5.6(middle).

The normalized variance over trials vd =
var[bd ]

∑d′ var[bd′ ]
for each bias term in the additive

predictor is reported in 5.6(left). This measure was used in [151] and corresponds

to the normalized variances of the bias distributions shown in Figure 5.6(middle).

We found that the proportion of the variance explained by the recent trials

decays as a function of the lag, with only the 3 most recent trials having a significant

contribution to the bias. The bias term for d∞ is preserved in its shape and magnitude

when the additional recent trial covariates are added (see Fig. 5.6(right) and Fig.

5.3).

An important observation is the persistence of the b∞ bias term when covariates

corresponding to trials further in the past are added to the regression. At this point,

we can only conclude that the biasing effect of past trials cannot be explained by

a simple additive combination (otherwise, b∞ term would vanish as more lags are

included in the regression).
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Figure 5.6: Left: Normalized fraction of bias terms in additive predictor. Middle: His-
togram of bias values. Right: Inferred biasing functions and standard error.

Experiment Total included excluded ≤ 60% < 90%
1 (unimodal 2 octaves) 130 68 62 24 38
2 (unimodal 3 octaves ) 156 96 60 19 41

3 (bimodal) 158 87 71 35 36

Table 5.1: Inclusion table per experiment and per accuracy bounds

5.4.3.4 Bias for different distributions

We now applied the same analysis to 3 different datasets corresponding to 3 versions

of the same task differing only in regard to the sampling distribution of the stimuli

(unimodal 3oct, unimodal 2oct, bimodal), selecting subjects whose overall accuracy

fell between 60% and 90%. Inclusion statistics are given in table 5.1.

First we show that for all 3 distributions, the non-linear additive predictor

b1(d1)+b∞(d∞) has the best predictive power. For each distribution, relative cross-

validated AUCs for different bias models are reported in Figure 5.9.

Inferred biases are shown in Figure 5.7. The bias b∞ varies the most across dis-

tributions, both quantitatively and qualitatively. Within the [−1oct,1oct] range, b1

functions were essentially equal (note that beyond this range, posterior uncertainty

is larger). Thus our observations reveal that the recency bias b1 is not sensitive to

changes in the sampling distribution while the long term bias b∞ is.

Confirming observations of Ashourian et al [132], subjects’ long term bias

appears to be attractive and ‘follows’ the distribution for the 2 uniform sampling

distributions of frequencies. The case of the bimodal sampling distribution reveals

local contraction toward the mean of each component of the mixture, superimposed

on a global contraction towards the overall mean of the distribution.
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Figure 5.7: Inferred sensory history bias functions for the 3 different experiments.

Experiment [60-70%[ [70-80%[ [80-90%[ ≤ 60% > 90%
1 (unimodal 2 octaves) 21 21 26 24 38
2 (unimodal 3 octaves ) 20 25 51 19 41

3 (bimodal) 23 23 41 35 36

Table 5.2: Inclusion table per experiment for regression analysis for accuracy bounds [60-
70%[,[70-80%[,[80-90%[

Finally, we report the performance-dependence of the bias. For each of the 3

experiments we grouped the subjects in 3 accuracy groups ([60-70%[,[70-80%[,[80-

90%[) and fit a GAM with a joint bias over d1 and d∞, and individual α per subject.

Inclusion statistics are reported in Table 5.2. Biases are shown in Figure 5.8. They

demonstrate the validity of the additive assumption (a separate bias function for d1

and d∞) that is inferred even when this assumption is not made a priori.

It is interesting to note at this point that the range of reported biases does not

vary much across accuracy groups or across distributions. The bias b of a predic-

tor αδ + b is dimensionless. This predictor can be rewritten as α
(
δ + b

α

)
which

reveals that the ’effective’ bias in log Hertz is b
α

. In our analysis, the fact that b is

invariant across accuracy groups does not mean the bias has the same magnitude

across groups. Instead, the better the subject (large α) the smaller the ’effective’

bias b
α

(the smaller the contraction in log Hertz).
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Figure 5.8: Bias b1(d1)+b∞(d∞) for the 3 stimulus distributions and for 3 accuracy groups.
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5.5 Ideal observer models

5.5.1 Aims and goals

Our GAM analysis of subjects’ responses across sampling distributions revealed a

long term bias induced by sensory history that depended on the stimulus distribu-

tion. This distribution dependence of the long term bias is a characteristic of Ideal

observer models [132] which encouraged us to study the predictions of similar IO

models for the broader variety of distributions we used.

Our analysis also revealed a biasing effect of the most recent sensory history,

which is not predicted by the IO approach in [132].

Our aim here is twofold: (1) assess if this IO approach can predict the observed

long term biases revealed by our regression analysis, (2) attempt to explain both

long term and short term effects within a single framework.

5.5.2 Theory

Following Ashourian et al [132], we derive an IO model for the delayed discrim-

ination task. For each tone f , subjects are assumed to observe a noisy version f̃

of f with, at decision time, more noise on the first tone due to a noisy memory

retention mechanism. We denote by p( f ) the true stimulus distribution, p
(

f̃i| fi
)

the noise model, and p̂( f ) and p̂
(

f̃i| fi
)

subjects’ internal representation of these

distributions. These internal representations of the environmental statistics might

differ from the true ones, especially for the stimulus distribution p̂( f ) which is only

indirectly experienced through a limited number of samples during the task.

We set the noise model to be Gaussian centered on the true log-frequencies,

that is p
(

f̃i| fi
)
= N

(
f̃i; fi,σ

2
i
)
. Noise is exclusively sensory for the second tone

σ2
2 = σ2

s . The first tone has an additional memory noise σ2
1 = σ2

s +σ2
m. We will

assume that subjects have an accurate knowledge of their own noise, that is their

internal uncertainty matches the actual level of noise: p
(

f̃i| fi
)
= p̂

(
f̃i| fi
)
. This is

motivated a priori by both the aims to deviate as little as possible from optimality

(the starting point of Bayesian rational analyses like the one we conduct here) given

our IO model and to minimize the complexity of the model.
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5.5.2.1 Optimal decision and likelihood

Given two noisy tones f̃1, f̃2, the optimal decision on whether “ f1 > f2” is

1
[
P̂
(

f1− f2 > 0| f̃1, f̃2
)
> 1

2

]
, where 1[x] =

 0, for x≤ 0

x, for x > 0
.

Averaging over noise realisations leads to the optimal decision probability:

P(“ f1 > f2”| f1, f2) = E f̃1, f̃2∼p( f̃1, f̃2| f1, f2)1
[

P̂
(

f1− f2 > 0| f̃1, f̃2
)
>

1
2

]
At this point, we are left to specify the subjects’ internal representation of the stim-

ulus distribution p̂( f ).

In the first section, I will consider the case where subjects’ prior matches the

true distribution as in Ashourian et al [132], further exploring the predictions of this

approach. In the second section, I introduce a prior learning rule that enables one to

capture both recent and long term biases in the same unifying framework.

5.5.2.2 Approximation

In most cases, the decision probability has no closed form and needs to be approxi-

mated. The decision probability can be rewritten as

P(“ f1 > f2”| f1, f2) = E f̃1, f̃2∼p( f̃1, f̃2| f1, f2)1
[
m̂
(

f̃1, f̃2
)
> 0
]

with m̂
(

f̃1, f̃2
)
= median

[
P̂
(

f1− f2| f̃1, f̃2
)]

.

First, we approximate the median of the posterior over the difference f1− f2

by the difference of the medians of the individual posteriors:

median
[
P̂
(

f1− f2| f̃1, f̃2
)]
≈ median

[
P̂
(

f1| f̃1
)]︸ ︷︷ ︸

m̂1( f̃1)

−median
[
P̂
(

f2| f̃2
)]︸ ︷︷ ︸

m̂2( f̃2)

Unreported simulations demonstrate the accuracy of this approximation for the

distributions we consider.

Second, we approximate the expectation via Monte Carlo samples

E f̃1, f̃2∼p( f̃1, f̃2| f1, f2)1
[
m̂
(

f̃1, f̃2
)
> 0
]
≈ ∑

i
∑

j
1
[
m̂
(

f̃1
(i)
, f̃2

( j)
)
> 0
]

Where possible, the median and the expectations are computed analytically.

Another option to approximate the expectation over noise is to approximate

each conditional noise distribution by a discrete distribution. For example p( f̃ j| f j)
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is approximated by discrete outcomes and weights {w̃s
j, f̃ s

j} (for example, f̃ s
j uni-

formly around the mean f j and unnormalized weights proportional to the density

function w̃s
j ∝ p( f̃ s

j | f j) ) . The posterior median distribution p(m̂ j| f j) is approx-

imated by the discrete distribution {w̃s
j, m̂ j( f̃ s

j )}. The difference of the posterior

median p(m̂1− m̂2| f1, f2) is also a discrete distribution {ws,dms}. Hence the de-

cision probability correspond to its cumulative density function evaluated at 0 is

easily computable as

E f̃1, f̃2∼p( f̃1, f̃2| f1, f2)1
[
m̂( f̃1, f̃2)> 0

]
≈∑

s
1[dms > 0]ws

An advantage of this approximation is that it leads to deterministic decision

probabilities. An additional relaxation of the hard threshold x→ 1[x > 0] to a soft

threshold x→ φ(βx), with φ the sigmoid function and β controling the relaxation,

leads to a differentiable decision probability, allowing for gradient based determin-

istic optimisation of the likelihood of subject responses with respect to the parame-

ters of our IO models.

5.5.3 The Fixed Prior case

In this section I focus on the setting where p̂( f ) is fixed to p( f ) throughout the

experiment. The model is fully specified by the memory and noise variances σ2
s ,σ

2
m

and p( f ).

5.5.3.1 Theoretical biases

Given noisy tones f̃1, f̃2 the optimal decision on whether “ f1 > f2” can be rewritten

as 1
[
m̂
(

f̃1, f̃2
)
> 0
]

with m̂
(

f̃1, f̃2
)
= median

[
p̂
(

f1− f2| f̃1, f̃2
)]

. In other words,

the ideal decision is to threshold the median of the posterior on the tones difference

at 0. For a given pair of tones f1, f2 and considering all possible conditional noise

realisations, we have a random threshold m̂| f1, f2 and hence a decision probability

P(“ f1 > f2”| f1, f2) = Em̂| f1, f21 [m̂ > 0| f1, f2].

Writing µ̂ ( f1, f2) = E [m̂| f1, f2] and σ̂2 ( f1, f2) = Var [m̂| f1, f2] and approx-

imating the median distribution by the moment-matched Normal distribution
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Figure 5.10: Illustration of the implementation of the IO model. Here the prior is set to
be a uniform distribution. Given a true stimulus f1, noisy encoding leads to
representation f̃1. For a fixed representation f̃1, combining sensory uncer-
tainty p

(
f̃1| f1

)
with prior expectations p( f1) on frequency leads to the pos-

terior p̂
(

f1| f̃1
)

and its median m̂1
(

f̃1
)

used as a threshold to form a decision.
Considering all possible noisy representations leads to a distribution over the
posterior median p(m̂1| f1). Relative noise standard deviation and prior width
are here arbitrary and chosen to best illustrate the implementation.

m̂| f1, f2 ∼N
(
µ̂ ( f1, f2) , σ̂

2 ( f1, f2)
)

leads to the decision probability

P(“ f1 > f2”| f1, f2) ≈ φ

(
µ̂ ( f1, f2)

σ̂ ( f1, f2)

)
≈ φ

(
f1− f2

σ̂ ( f1, f2)
+ b̂( f1, f2)

)

Given this formulation, a subject’s performance is fully summarized by a bias

function b̂( f1, f2) and the variability σ̂ ( f1, f2). An intuitive way to report the bias

is to compute the decision probability of the model for a pair of similar tones:

P(“ f1 > f2”| f1 = f2) = φ
(
b̂( f1, f2 = f1)

)
An illustration of the IO model in this fixed prior case is given is Figure 5.10.
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Figure 5.11: Theoretical biases for the normative model across distributions and accuracy
range. Colors correspond to different distributions, Line contrast corresponds
to different accuracy ranges (darker corresponds to lower accuracy)

5.5.3.2 Predicting biases across distributions and subjects

For each of the three stimulus distributions described in section 5.3, I grouped

subjects into three groups depending on their overall accuracy ([60-70%],[70-

80%],[80-90%]) leading to a total of 9 conditions as in section 5.4.3.4. Likeli-

hood maps for parameters ρ =
σ2

1
σ2

1+σ2
2

and σ2
tot = σ2

1 + σ2
2 are reported for each

condition in Figure 5.12 revealing clear optima. For each condition, I repeatedly

randomly split the trials into training and test sets (10% test, 10 repeats) and fit the

IO model, maximizing the likelihood. Fitted parameters ρ and σtot are reported in

Figure 5.13 with errorbars depicting standard deviations across the random training

sets. For all 3 sampling distributions, σtot decreases with the accuracy range, while

ρ remains mainly unchanged across accuracy ranges and distribution. Theoretical

biases reported in Figure 5.11 demonstrate the differential effects of the sampling

distribution and the accuracy of subjects. The sampling distribution sets the overall

bias range and shape. The effect of the accuracy range is more subtle. For uniform

sampling distributions, the bias is observed further away from the distribution edges

as accuracy decreases.

As a further validation of the model, the predicted accuracies of the fitted mod-

els on task are reported in Figure 5.14 and show that for all sampling distributions

and groups, predicted accuracy falls into the corresponding accuracy range.
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Figure 5.12: Likelihood map for the IO model with true prior for 3 accuracy ranges and 3
experiments. White dots mark the parameter set maximizing the likelihood.
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Figure 5.13: Fitted parameters for the IO model with true prior, for 3 accuracy ranges and 3
sampling distributions. Color contrast correspond to different accuracy ranges
(darker corresponds to lower accuracy).
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Figure 5.14: Mean accuracy of fitted model for each group and experiment.

This model predicts no effect of recent sensory history on decisions. However,

the theoretical long term biases look like the ones inferred in our GAM analysis.

This qualitative yet precise resemblance across sampling distributions and subject

accuracy groups suggests that the long term biases may be the mark of an uncer-

tainty dependent combination of learned prior expectations and sensory informa-

tion.

5.5.4 Learning the prior

5.5.4.1 Model specification

We now formalize the assumption that subjects learn the stimulus distribution based

on their own variable and uncertain experience. In the previous section we used

the stimulus distribution as a prior and revealed that a range of complex distribu-

tions may be learned. Our GAM analysis further revealed that the tones of re-

cent trials have a separate effect from that of the more distant past sensory his-

tory. We choose to model the learned prior at time t as a mixture of Gaussians

p̂t ( f ) = ∑τ wτN
(

f ; f̃t−τ ,σ
2
τ

)
. This form allows one to learn and approximate var-

ious stimulus distributions and to account for relatively different contributions of

past trials in the prior, depending on the lag τ .

The choice of the lag-dependence on both weights wτ and variances σ2
τ is

constrained by empirical observations: First, both recent and long-term sensory

history affect subjects’ perceptual decisions. The recency effect suggests that recent

trials should be dominant while the long term effect suggests that trials further back
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Figure 5.15: Illustration of the prior learning model. Sampling distribution p is approxi-
mated as a mixture of Gaussians p̂, with components centered on past stimuli
and stronger weights for recent trials.

also contribute to the mixture. Second, the model should be able to capture inter-

individual differences in subjects’ contextual bias.

Beyond these desiderata, the actual parametric choice for the learning is some-

what arbitrary.

We choose the following parameterization:

• σ2
τ = σ2

p (independent of τ)

• wτ ∝ o+(1−o).e−τ/η

The variance of mixture components is independent of the lag and left as a free

parameter. Weights decay exponentially with rate η and with an offset o. The full

model has a total of 5 parameters: the noise parameters σs,σm and the prior learning

parameters τ,σp,o. A cartoon description of the prior learning mechanism is shown

in Figure 5.15.

5.5.4.2 Results

For the same accuracy groups and for the 3 sampling distributions as in section

5.4.3.4, I repeatedly randomly split the trials into training and test sets (10% test,

10 repeats). I fit the prior learning model to the training set by maximizing the

likelihood and report the likelihood of the fitted model on the test set.

Results are reported in Figure 5.17. For all distributions and accuracy ranges,
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Figure 5.16: Fitted parameters for the prior learning IO model, for 3 accuracy ranges and 3
sampling distributions. Color contrast correspond to different accuracy ranges
(darker corresponds to lower accuracy)

the prior learning model achieves a better predictive likelihood than the model us-

ing the true sampling distribution as a prior. However, the fitted models consistently

predict lower accuracies on the task (Figure. 5.18). Overall, these results demon-

strate the better predictive abilities of our model including a parametric distribution

learning mechanism. Our method however, does not match the prediction abilities

of the GAM analysis. This quantitative failure shown in Figure 5.17 could be ex-

plained by the strong parametric assumptions of the pre-existing IO (log encoding,

additive sensory and memory noise) and the somewhat arbitrary form of our distri-

bution learning mechanism. Fitted parameters are reported in Figure 5.16. Fitted

parameters σtot and ρ have the same qualitative and quantitative variation with sam-

pling distribution and accuracy range as in the initial IO model with a fixed prior.

In all cases the decay rate η is below ≈ 1, meaning the fitted decay is fast. The pa-

rameter σp covaries with σtot , matching the intuition that the noisier the perception

the less accurate is the learned prior.
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Figure 5.17: Cross-validated likelihoods difference for the IO model with fixed and learned
prior. These are substracted to the likelihood of a GAM model with bias
terms b1(d1)+b∞(d∞). Results are shown for 3 accuracy ranges and for the 3
sampling distributions.
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Figure 5.18: Fitted model predicted accuracy for each sampling distribution and accuracy
range.
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5.6 Discussion

In this chapter, our GAM analysis revealed how both recent and long-term sensory

history affect decisions in a delayed discrimination task. We found that subjects’

decisions are biased by long term sensory history in a way that depends on the

sampling distribution used in the task, while the effect of the more recent sensory

history is independent of the sampling distribution. This analysis revealed that the

bias cannot be explained as a linear contraction towards a weighted sum of past tone

frequencies. Instead these past frequencies bias decisions in a non-linear manner.

A pre-existing IO model could explain qualitative properties of the long-term

bias. This bias reflected a detailed statistical knowledge of the sampling distribu-

tion for 3 distributions. The predictions also extended to the case of a wide Gaus-

sian distribution of standard deviation equal to 0.4 octaves for which the predicted

bias is linear (not shown). However, this IO model predicted no recency effect.

Introducing a distribution-learning mechanism into the IO model made it possible

to qualitatively reproduce bias at both time scales and quantitatively better predict

subject responses in all all conditions.

Although we achieved a good qualitative fit, our model did not match the pre-

dictive abilities of the descriptive GAM analysis we carried out. This is probably a

consequence of the parametric form of the model, that is too simplistic or erroneous

in its description of the memory, encoding, statistical learning or decision processes.

Further work could help refine the model and provide a better quantitative match.

Additional experimental manipulations could also help constrain the model. Manip-

ulating the delay between the discriminated tones could help constrain our model of

working memory. Manipulating the tone duration could help constrain our model

of noise and uncertainty.

An important choice we made in this study is to assume that subjects uncer-

tainty matched their memory and sensory noise. This is a strong assumption and

subjects might instead over or underestimate the noise level in their sensory and

memory processes. Since uncertainty and learned prior shape the magnitude and

shape of the bias, allowing uncertainty to differ from noise could lead to different
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conclusions about the statistical learning processes underlying the recency effect

and could provide a better match to the data.

This work was done in collaboration with Merav Ahissar who plans to use this

more detailed characterisation of behavior in simple psychophysical tasks as a way

to understand statistical learning in psychiatric populations such as dyslexics and

members of the autistic spectrum.



Chapter 6

General Conclusions

Three sets of psychophysical experiments demonstrating contextual effects in au-

ditory perception have been reported along with computational models to explain

their results. These models are based on the framework of perception as inference.

The objects of study in these three experiments and the proposed explanations are

closely related yet different.

6.1 Pitch and Frequency Shifts
In all three experiments, subjects were asked to report the direction of a shift in a

dimension related to pitch. In chapter 5, pure tones were compared and frequency

shift equates to pitch shift. In chapter 3, tones were designed to be ambiguous be-

tween two possible octave related values of pitch. In this study I assumed that the

pitches extracted from each sound are the quantities being compared in the decision

process. In one experiment of chapter 4, non harmonic complexes were compared

and it is less clear what subjects reported. It is not pitch given that the non-harmonic

complexes have no clear pitch. Instead, it appears to be a combination of local fre-

quency shifts and this same the intuition underlies our proposed tracking model to

account for the results. Two different mechanisms seem to underlie the perception

of frequency and pitch shifts. The perception of the non-ambiguous pitch of har-

monic complexes can be thought of as one of ‘vertical’ or ‘synchronous’ grouping.

Tones in harmonic ratio are perceived as a whole, no single harmonic stands out.

Pairs of harmonic complexes can be constructed with upward perceived change of
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pitch but overall decrease of frequency content. This is to be opposed to the tem-

poral or ‘horizontal’ grouping or binding of tones. When pairs of tones evoking

a clear pitch are compared, subjects behave as if they first extracted the pitch of

the two tones and then compared those. When the tones have no clear pitch, lo-

cal frequency shifts are what drives subjects reports. The interaction of these two

mechanisms is largely unknown but their existence can be justified by the fact that

they support different functions of interest in auditory scene analysis.

6.2 A shared contraction bias explanation?

The two experiments reported in chapters 4 and 5 have striking similarities in their

results and explanations. In both cases the percept seems to reflect the contraction

of a stimulus towards a combination of those recently experienced. Our explana-

tions however differ. In the case of pure tone discrimination, we were interested in

the precise magnitude of the contraction of a tone represented in memory. This was

possible due to the simplicity of the task design with simple pure tones presented

separately. We derived predictions on how this contraction scales with assumed

levels of noise and uncertainty in a normative model of the task. In the case of the

biasing of ambiguous shifts, an implicit contraction breaks the symmetry causing

the ambiguity of the task but in this analysis (that we performed chronologically

earlier), it was not the main focus of the analysis. In principle, one could attempt to

explain the disambiguation using the model we derived for the pure tone discrimi-

nation case. Indeed, given the nature of the stimuli used, statistical learning would

lead to learn a mixture model from context tones with components aligned with the

biasing regions. Contraction of the first tones towards the nearest ’bump’ would

then break the ambiguity in the desired direction. A shared explanation is how-

ever unlikely. In the Shepard tone experiment, a single tone context 3 semitones

above T1 almost completely resolves the ambiguity and leads to 90% of upward re-

sponses. Such a bias could only be explained by a contraction of the first tone by 2

to 3 semitones which would lead to very large biases even for test pairs with clear

non-ambiguous shifts. This is clearly not the case, non ambiguous pairs of Shepard
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T1,T2 with 1 semitone interval are hardly biased at all by the same context tone 3

semitones above T1.

In this thesis, we suggest different mechanisms may be at play in these two ex-

periments which makes a possible unification difficult and speculative. More work

needs to be conducted to validate (or falsify) the models we proposed as guides to

understand perceptual processes.

6.3 Summary of contributions to auditory neuro-

science and future directions
The work presented in this thesis provides a better understanding of the dynamics of

perception. Experiments of chapter 5 is the most detailed demonstration of the con-

traction and exhibits very clearly the different time-scales the integration of sensory

history into perception. I revisited the decades old experimental paradigm of tone

discriminations and showed how it can be used to study the dynamics of statistical

learning, hence extending the range of its applications in auditory psychophysics.

Our statistical learning model needs to be further validated. A key experiment

would consist in observing behavior of subjects when the stimulus distribition is

changed in the middle experiment. Would subject notice the change? How would it

affect their learning of the stimulus statistics?

The work presented in chapter 4 provides further evidence that sensory history

biases perception. Our proposed computational account, although rather tailored to

the particular stimuli used in the experiments proposes an abstract way of under-

standing the effect of sensory history that is simpler and leads to a better explana-

tion of the psychophysical data gathered so far than alternative neuro-mechanistic

models. It also provides another way of reasoning about auditory scenes and their

structure that might prove useful to design the next iteration of experiments.

Finally, the use of GAMs to study psychophysical data is not novel but proved

to be crucial in these studies. The development of algorithms to perform com-

plex regression analyses on large datasets is a methodological contribution that has
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applications way beyond the scope of the particular experiments reported in this

thesis. In future work, I plan to more widely share software implementing these

methods to make them more readily available to the research community.



Appendix A

Duration dependence of tone

Likelihood

The particular choice of the temporal dependence on tone precision is not arbitrary.

Assume σ2is the variance of a one second-long tone of log-frequency f . The like-

lihood of this tone given a group mean µ is N ( f ; µ,σ2).

p( f |µ,σ2) = N ( f ; µ,σ2)

∝ exp
(
− 1

2σ ²
( f −µ)2

)
Now we split this tone into n consecutive subtones ( f1, ..., fn) of duration d(n) =

1/n and value f , and write σ2
n for the variance of the likelihood of each subtone.

The new joint likelihood for this group of subtones is

p( f1, ..., fn|µ,σ2) = ∏i N ( fi; µ,σ2
n )

∝ exp

(
− 1

2σ ²n
∑

i
( fi−µ)2

)

∝ exp
(
− n

2σ ²n
( f −µ)2

)
Equating the precisions for the single or group likelihood leads to 1

σ ²n
= n

σ ²n
or

σ ²n = nσ ² = σ ²
d(n) .

From this result, any duration d can be approximated as d ≈ k.d(n), with k =

bd/d(n)c, so the sensory variance for a tone of duration d is σn²
k = 1

bd/d(n)c
σ ²

d(n) ≈ σ ²
d



Appendix B

Details of the derivations of the

filtering procedure

Notation

• p
(

T (k)
t

)
prior at time t on kth track mean

• p(ηt) prior at all times on tone assignment

• C(n)
t : nth-tone of chord Ct observed at time t

The joint at over variables at time t is

log p
(

T (1..K)
t ,η

(1..N)
t ,C(1..N)

t

)
= ∑

n
∑
k

δ (η
(n)
t = k) log p

(
C(n)

t |T (k)
t ,η

(n)
t = k

)
+ ∑

n
∑
k

δ (η
(n)
t = k) log p(η(n)

t = k)

+ ∑
k

log p(T (k)
t )

The assumed factorization of the posterior over latent variables after the observation

of a chord at time t is

p
(

T (1..K)
t ,η

(1..N)
t |C(1..N)

t

)
≈ ∏

k
q
(

T (k)
t

)
∏

n
q(η(n)

t )

We approximate the posterior by minimizing the Kullback Leibler divergence be-

tween the true posterior and the assumed factored form (fully factored variational

expectation maximization [161, 162])

Q(Tt ,ηt) = argmin
Q

KL(Q(Tt ,ηt)|p(Xt ,ηt |Ct))
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The variational updates for attribution are

q
(

η
(n)
t = k

)
∝ exp

(
〈log p

(
C(n)

t |T (k)
t ,η

(n)
t = k

)
〉

q
(

T (k)
t

)+ log p(η(n)
t = k)

)
∝ πk exp

(
− 1

2σ2
c
〈
(

C(n)
t −T (k)

t

)2
〉

q
(

T (k)
t

))
∝ πk exp

(
− 1

2σ2
c

((
C(n)

t −µ
(k)
t

)2
+σ

(k)2
t

))
∝ πkN

(
C(n)

t ; µ
(k),σ2

c

)
exp

(
−1

2
σ
(k)2
t /σ

2
c

)
Since tone attributions sum to one, we have

q
(

η
(n)
t = k

)
=

πkN
(

C(n)
t ; µ(k),σ2

c

)
e−

1
2 σ

(k)2
t /σ2

c

∑k′ πk′N
(

C(n)
t ;µ(k′),σ2

c

)
e−

1
2 σ

(k′)2
t /σ2c

The variational updates for track statistics are

q
(

T (k)
t

)
∝ exp

(
log p(T (k)

t )+∑
n
〈δ (η(n)

t = k)〉
q
(

η
(n)
t =k

) log p
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∝ exp
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− 1
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− 1
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with r(k)n = 〈δ (η(n)

t = k)〉
q
(

η
(n)
t =k

).

This leads to the track statistics updates:

σ
(k)2
t+ =

(
1

σ
(k)2
t

+
∑n r(k)n

σ2
c

)−1

µ
(k)
t+ =

(
µ
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σ
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+
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/
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1

σ
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