38 research outputs found

    Hypoglycaemia detection for type 1 diabetic patients based on ECG parameters using Fuzzy Support Vector Machine

    Full text link
    Nocturnal hypoglycaemia in type 1 diabetic patients can be dangerous in which symptoms may not be apparent while blood glucose level decreases to very low level, and for this reason, an effective detection system for hypoglycaemia is crucial. This research work proposes a detection system for the hypoglycaemia based on the classification of electrocardiographic (ECG) parameters. The classification uses a Fuzzy Support Vector Machine (FSVM) with inputs of heart rate, corrected QT (QTc) interval and corrected TpTe (TpTe c) interval. Three types of kernel functions (radial basis function (RBF), exponential radial basis function (ERBF) and polynomial function) are investigated in the classification. Moreover, parameters of the kernel functions are tuned to find the optimum of the classification. The results show that the FSVM classification using RBF kernel function demonstrates better performance than using SVM. However, both classifiers result approximately same performance if ERBF and polynomial kernel functions are used. © 2010 IEEE

    Electrocardiogram and hybrid support vector algorithms for detection of hypoglycaemia in patients with type 1 diabetes

    Full text link
    University of Technology, Sydney. Faculty of Engineering and Information Technology.Hypoglycaemia is the most acute and common complication of type 1 diabetes. Physiological changes occur when blood glucose concentration falls to a certain level. A number of studies have demonstrated that hypoglycaemia causes electrocardiographic (ECG) alteration. The serious harmful effects of hypoglycaemia on the body motivate research groups to find an optimal strategy to detect it. Detection of hypoglycaemia can be performed by puncturing the skin to measure the blood glucose level. However, this method is unsuitable as frequent puncturing may produce anxiety in patients and periodic puncturing is difficult to conduct, not to mention inconvenient, while the patient is sleeping. Therefore, a continuous and non-invasive technique can be considered for hypoglycaemia detection. Several techniques have been reported, such as reverse iontophoresis and absorption spectroscopy. Another approach to hypoglycaemia detection is based on the physiological effects of hypoglycaemia on the various parts of the body such as the brain, heart and skin. Physiological effects of hypoglycemia to the brain are studied by investigating electroencephalography (EEG) features. Hypoglycemic effects to the heart include alteration of electrocardiographic (ECG) parameters such as heart rate, QT intervals and T-wave amplitude alteration. Several algorithms were developed to process ECG parameters for hypoglycemia detection. The algorithms include neural network and fuzzy system based intelligent algorithms. Furthermore, hybrid systems were also developed, such as fuzzy neural network and genetic-algorithm-based multiple regression with fuzzy inference systems. So far, hypoglycaemia detection systems which are based on the physiological effects still require extensive validation before they can be adopted for worldwide clinical practices. The research in this thesis introduces several ECG parameters especially which relate to the repolarization phase and could contribute to hypoglycaemia detection. Furthermore, this research aims to introduce novel computational intelligent techniques for hypoglycaemia detection. The detection is based on electrocardiographic (ECG) parameters. A support vector machine (SVM) is the first algorithm introduced for hypoglycaemia detection in this research. The second algorithm is a hybrid of SVM with particle swarm optimization (PSO), which is called an SSVM algorithm. This algorithm is intended to improve the performance of the first algorithm. PSO is an evolutionary technique based on the movement of swarms. It is employed to optimize SVM parameters in order that the SVM perform well for hypoglycaemia detection. The third algorithm is for the improvement of the second algorithm where a fuzzy inference system (FIS) is included. This algorithm involves SVM, FIS and a PSO, which is called SFSVM. The FIS is used to process some ECG parameters to find a better performance of hypoglycaemia detection. FIS is an effective intelligent system which employs fuzzy logic and fuzzy set theory. Its frameworks are based on the concepts of fuzzy set theory, fuzzy if-then rules, and fuzzy reasoning. In addition, the proposed algorithms are compared with the other algorithms. All the algorithms are investigated with clinical electrocardiographic data. The data is collected from a hypoglycaemia study of type 1 diabetic patients. This study shows that the selected ECG parameters in hypoglycaemia differ significantly from those in nonhypoglycaemia (p<0.01). This difference might consider that the ECG parameters are part of repolarization, in which repolarization prolongs hypoglycaemia. It implies that the ECG parameters are important parameters which possibly contribute to hypoglycaemia detection. Therefore, the ECG parameters are used for inputs of hypoglycaemia detection in this study. The result also shows that the hypoglycaemia detection strategy which uses SSVM performs better than that which uses SVM (80.04% vs. 73.63%, in terms of geometric mean). Furthermore, the SFSVM performs better than the SSVM (87.22% vs. 80.45% in terms of sensitivity and 79.41% vs. 79.64% in terms of specificity). In summary, SFSVM performs better than the other two algorithms (SVM and SSVM), with acceptable sensitivity, specificity and geometric mean of 87.22%, 79.41% and 83.22%, respectively

    Electrocardiographic signals and swarm-based support vector machine for hypoglycemia detection

    Full text link
    Cardiac arrhythmia relating to hypoglycemia is suggested as a cause of death in diabetic patients. This article introduces electrocardiographic (ECG) parameters for artificially induced hypoglycemia detection. In addition, a hybrid technique of swarm-based support vector machine (SVM) is introduced for hypoglycemia detection using the ECG parameters as inputs. In this technique, a particle swarm optimization (PSO) is proposed to optimize the SVM to detect hypoglycemia. In an experiment using medical data of patients with Type 1 diabetes, the introduced ECG parameters show significant contributions to the performance of the hypoglycemia detection and the proposed detection technique performs well in terms of sensitivity and specificity. © 2011 Biomedical Engineering Society

    Electrocardiographic T-wave peak-to-end interval for hypoglycaemia detection.

    Full text link
    Electrocardiographic T wave peak-to-end interval (TpTe) is one parameter of T wave morphology, which contains indicators for hypoglycaemia. This paper shows the corrected TpTe (TpTe(c)) interval as one of the inputs contributing to detect hypoglycaemia. Support vector machine (SVM) and fuzzy support vector machine (FSVM) utilizing radial basis function (RBF) are used as the classification methods in this paper. By comparing with the classification systems using inputs of corrected QT interval (QT(c)) and heart rate only, the results indicate that the inclusion of TpTec in combination with QTc and heart rate performs better in the detection of hypoglycaemia in terms of sensitivity, specificity and accuracy

    Precision medicine and artificial intelligence : a pilot study on deep learning for hypoglycemic events detection based on ECG

    Get PDF
    Tracking the fluctuations in blood glucose levels is important for healthy subjects and crucial diabetic patients. Tight glucose monitoring reduces the risk of hypoglycemia, which can result in a series of complications, especially in diabetic patients, such as confusion, irritability, seizure and can even be fatal in specific conditions. Hypoglycemia affects the electrophysiology of the heart. However, due to strong inter-subject heterogeneity, previous studies based on a cohort of subjects failed to deploy electrocardiogram (ECG)-based hypoglycemic detection systems reliably. The current study used personalised medicine approach and Artificial Intelligence (AI) to automatically detect nocturnal hypoglycemia using a few heartbeats of raw ECG signal recorded with non-invasive, wearable devices, in healthy individuals, monitored 24 hours for 14 consecutive days. Additionally, we present a visualisation method enabling clinicians to visualise which part of the ECG signal (e.g., T-wave, ST-interval) is significantly associated with the hypoglycemic event in each subject, overcoming the intelligibility problem of deep-learning methods. These results advance the feasibility of a real-time, non-invasive hypoglycemia alarming system using short excerpts of ECG signal

    Precision medicine and artificial intelligence : a pilot study on deep learning for hypoglycemic events detection based on ECG

    Get PDF
    Tracking the fluctuations in blood glucose levels is important for healthy subjects and crucial diabetic patients. Tight glucose monitoring reduces the risk of hypoglycemia, which can result in a series of complications, especially in diabetic patients, such as confusion, irritability, seizure and can even be fatal in specific conditions. Hypoglycemia affects the electrophysiology of the heart. However, due to strong inter-subject heterogeneity, previous studies based on a cohort of subjects failed to deploy electrocardiogram (ECG)-based hypoglycemic detection systems reliably. The current study used personalised medicine approach and Artificial Intelligence (AI) to automatically detect nocturnal hypoglycemia using a few heartbeats of raw ECG signal recorded with non-invasive, wearable devices, in healthy individuals, monitored 24 hours for 14 consecutive days. Additionally, we present a visualisation method enabling clinicians to visualise which part of the ECG signal (e.g., T-wave, ST-interval) is significantly associated with the hypoglycemic event in each subject, overcoming the intelligibility problem of deep-learning methods. These results advance the feasibility of a real-time, non-invasive hypoglycemia alarming system using short excerpts of ECG signal

    Hybrid PSO-based variable translation wavelet neural network and its application to hypoglycemia detection system

    Full text link
    To provide the detection of hypoglycemic episodes in Type 1 diabetes mellitus, hypoglycemia detection system is developed by the use of variable translation wavelet neural network (VTWNN) in this paper. A wavelet neural network with variable translation parameter is selected as a suitable classifier because of its excellent characteristics in capturing nonstationary signal analysis and nonlinear function modeling. Due to the variable translation parameters, the network becomes an adaptive network and provides better classification performance. An improved hybrid particle swarm optimization is used to train the parameters of VTWNN. Using the proposed classifier, a sensitivity of 81.40 % and a specificity of 50.91 % were achieved. The comparison results also show that the proposed detection system performs well in terms of good sensitivity and acceptable specificity. © 2012 Springer-Verlag London Limited

    Combinational neural logic system and its industrial application on hypoglycemia monitoring system

    Full text link
    In this paper, a combinational neural logic network (NLN) with the neural-Logic-AND, -OR and -NOT gates is applied on the development of non-invasive hypoglycemia monitoring system. It is an alarm system which measured physiological parameters of electrocardiogram (ECG) signal and determine the onset of hypoglycemia by use of proposed NLN. Due to different nature of application, conventional neural networks (NNs) with common structure may not always guarantee the optimal solution. Based on knowledge of application, the proposed NLN is designed systematically in order to incorporate the characteristics of application into the structure of proposed network. The parameter of the proposed NLN will be trained by hybrid particle swarm optimization with wavelet mutation (HPSOWM). The proposed NLN will be practically analyzed using real data sets collected from 15 children (569 data sets) with Type 1 diabetes at the Department of Health, Government of Western Australia. By using the proposed method, the detection performance is enhanced. Compared with other conventional NNs, the proposed NLN gives better performance in terms of sensitivity and specificity. © 2013 IEEE

    EDMON - Electronic Disease Surveillance and Monitoring Network: A Personalized Health Model-based Digital Infectious Disease Detection Mechanism using Self-Recorded Data from People with Type 1 Diabetes

    Get PDF
    Through time, we as a society have been tested with infectious disease outbreaks of different magnitude, which often pose major public health challenges. To mitigate the challenges, research endeavors have been focused on early detection mechanisms through identifying potential data sources, mode of data collection and transmission, case and outbreak detection methods. Driven by the ubiquitous nature of smartphones and wearables, the current endeavor is targeted towards individualizing the surveillance effort through a personalized health model, where the case detection is realized by exploiting self-collected physiological data from wearables and smartphones. This dissertation aims to demonstrate the concept of a personalized health model as a case detector for outbreak detection by utilizing self-recorded data from people with type 1 diabetes. The results have shown that infection onset triggers substantial deviations, i.e. prolonged hyperglycemia regardless of higher insulin injections and fewer carbohydrate consumptions. Per the findings, key parameters such as blood glucose level, insulin, carbohydrate, and insulin-to-carbohydrate ratio are found to carry high discriminative power. A personalized health model devised based on a one-class classifier and unsupervised method using selected parameters achieved promising detection performance. Experimental results show the superior performance of the one-class classifier and, models such as one-class support vector machine, k-nearest neighbor and, k-means achieved better performance. Further, the result also revealed the effect of input parameters, data granularity, and sample sizes on model performances. The presented results have practical significance for understanding the effect of infection episodes amongst people with type 1 diabetes, and the potential of a personalized health model in outbreak detection settings. The added benefit of the personalized health model concept introduced in this dissertation lies in its usefulness beyond the surveillance purpose, i.e. to devise decision support tools and learning platforms for the patient to manage infection-induced crises
    corecore