21 research outputs found

    Hyperswitch communication network

    Get PDF
    The Hyperswitch Communication Network (HCN) is a large scale parallel computer prototype being developed at JPL. Commercial versions of the HCN computer are planned. The HCN computer being designed is a message passing multiple instruction multiple data (MIMD) computer, and offers many advantages in price-performance ratio, reliability and availability, and manufacturing over traditional uniprocessors and bus based multiprocessors. The design of the HCN operating system is a uniquely flexible environment that combines both parallel processing and distributed processing. This programming paradigm can achieve a balance among the following competing factors: performance in processing and communications, user friendliness, and fault tolerance. The prototype is being designed to accommodate a maximum of 64 state of the art microprocessors. The HCN is classified as a distributed supercomputer. The HCN system is described, and the performance/cost analysis and other competing factors within the system design are reviewed

    Generalized hypercube structures and hyperswitch communication network

    Get PDF
    This paper discusses an ongoing study that uses a recent development in communication control technology to implement hybrid hypercube structures. These architectures are similar to binary hypercubes, but they also provide added connectivity between the processors. This added connectivity increases communication reliability while decreasing the latency of interprocessor message passing. Because these factors directly determine the speed that can be obtained by multiprocessor systems, these architectures are attractive for applications such as remote exploration and experimentation, where high performance and ultrareliability are required. This paper describes and enumerates these architectures and discusses how they can be implemented with a modified version of the hyperswitch communication network (HCN). The HCN is analyzed because it has three attractive features that enable these architectures to be effective: speed, fault tolerance, and the ability to pass multiple messages simultaneously through the same hyperswitch controller

    Method and apparatus for eliminating unsuccessful tries in a search tree

    Get PDF
    A circuit switching system in an M-ary, n-cube connected network completes a best-first path from an originating node to a destination node by latching valid legs of the path as the path is being sought out. Each network node is provided with a routing hyperswitch sub-network, (HSN) connected between that node and bidirectional high capacity communication channels of the n-cube network. The sub-networks are all controlled by routing algorithms which respond to message identification headings (headers) on messages to be routed along one or more routing legs. The header includes information embedded therein which is interpreted by each sub-network to route and historically update the header. A logic circuit, available at every node, implements the algorithm and automatically forwards or back-tracks the header in the network legs of various paths until a completed path is latched

    Center for Space Microelectronics Technology 1988-1989 technical report

    Get PDF
    The 1988 to 1989 Technical Report of the JPL Center for Space Microelectronics Technology summarizes the technical accomplishments, publications, presentations, and patents of the center. Listed are 321 publications, 282 presentations, and 140 new technology reports and patents

    Adaptive fault-tolerant routing in hypercube multicomputers

    Get PDF
    A connected hypercube with faulty links and/or nodes is called an injured hypercube. To enable any non-faulty node to communicate with any other non-faulty node in an injured hypercube, the information on component failures has to be made available to non-faulty nodes so as to route messages around the faulty components. A distributed adaptive fault tolerant routing scheme is proposed for an injured hypercube in which each node is required to know only the condition of its own links. Despite its simplicity, this scheme is shown to be capable of routing messages successfully in an injured hypercube as long as the number of faulty components is less than n. Moreover, it is proved that this scheme routes messages via shortest paths with a rather high probabiltiy and the expected length of a resulting path is very close to that of a shortest path. Since the assumption that the number of faulty components is less than n in an n-dimensional hypercube might limit the usefulness of the above scheme, a routing scheme is introduced based on depth-first search which works in the presence of an arbitrary number of faulty components. Due to the insufficient information on faulty components, the paths chosen by the above scheme may not always be the shortest. To guarantee that all messages be routed via shortest paths, it is proposed that every mode be equipped with more information than that on its own links. The effects of this additional information on routing efficiency are analyzed, and the additional information to be kept at each node for the shortest path routing is determined. Several examples and remarks are also given to illustrate the results

    HiRel: Hybrid Automated Reliability Predictor (HARP) integrated reliability tool system, (version 7.0). Volume 2: HARP tutorial

    Get PDF
    The Hybrid Automated Reliability Predictor (HARP) integrated Reliability (HiRel) tool system for reliability/availability prediction offers a toolbox of integrated reliability/availability programs that can be used to customize the user's application in a workstation or nonworkstation environment. The Hybrid Automated Reliability Predictor (HARP) tutorial provides insight into HARP modeling techniques and the interactive textual prompting input language via a step-by-step explanation and demonstration of HARP's fault occurrence/repair model and the fault/error handling models. Example applications are worked in their entirety and the HARP tabular output data are presented for each. Simple models are presented at first with each succeeding example demonstrating greater modeling power and complexity. This document is not intended to present the theoretical and mathematical basis for HARP

    Tutorial: Advanced fault tree applications using HARP

    Get PDF
    Reliability analysis of fault tolerant computer systems for critical applications is complicated by several factors. These modeling difficulties are discussed and dynamic fault tree modeling techniques for handling them are described and demonstrated. Several advanced fault tolerant computer systems are described, and fault tree models for their analysis are presented. HARP (Hybrid Automated Reliability Predictor) is a software package developed at Duke University and NASA Langley Research Center that is capable of solving the fault tree models presented

    Technology 2000, volume 1

    Get PDF
    The purpose of the conference was to increase awareness of existing NASA developed technologies that are available for immediate use in the development of new products and processes, and to lay the groundwork for the effective utilization of emerging technologies. There were sessions on the following: Computer technology and software engineering; Human factors engineering and life sciences; Information and data management; Material sciences; Manufacturing and fabrication technology; Power, energy, and control systems; Robotics; Sensors and measurement technology; Artificial intelligence; Environmental technology; Optics and communications; and Superconductivity

    Space-Borne Computing for the Year 2000 and Beyond

    Get PDF
    Coordinated Science Laboratory was formerly known as Control Systems LaboratoryNational Aeronautics and Space Administration (NASA) / NAG-1-61

    Center for Space Microelectronics Technology

    Get PDF
    The 1990 technical report of the Jet Propulsion Laboratory Center for Space Microelectronics Technology summarizes the technical accomplishments, publications, presentations, and patents of the center during 1990. The report lists 130 publications, 226 presentations, and 87 new technology reports and patents
    corecore