29,782 research outputs found
Robust hyperspectral image classification with rejection fields
In this paper we present a novel method for robust hyperspectral image
classification using context and rejection. Hyperspectral image classification
is generally an ill-posed image problem where pixels may belong to unknown
classes, and obtaining representative and complete training sets is costly.
Furthermore, the need for high classification accuracies is frequently greater
than the need to classify the entire image.
We approach this problem with a robust classification method that combines
classification with context with classification with rejection. A rejection
field that will guide the rejection is derived from the classification with
contextual information obtained by using the SegSALSA algorithm. We validate
our method in real hyperspectral data and show that the performance gains
obtained from the rejection fields are equivalent to an increase the dimension
of the training sets.Comment: This paper was submitted to IEEE WHISPERS 2015: 7th Workshop on
Hyperspectral Image and Signal Processing: Evolution on Remote Sensing. 5
pages, 1 figure, 2 table
A new kernel method for hyperspectral image feature extraction
Hyperspectral image provides abundant spectral information for remote discrimination of subtle differences in ground covers. However, the increasing spectral dimensions, as well as the information redundancy, make the analysis and interpretation of hyperspectral images a challenge. Feature extraction is a very important step for hyperspectral image processing. Feature extraction methods aim at reducing the dimension of data, while preserving as much information as possible. Particularly, nonlinear feature extraction methods (e.g. kernel minimum noise fraction (KMNF) transformation) have been reported to benefit many applications of hyperspectral remote sensing, due to their good preservation of high-order structures of the original data. However, conventional KMNF or its extensions have some limitations on noise fraction estimation during the feature extraction, and this leads to poor performances for post-applications. This paper proposes a novel nonlinear feature extraction method for hyperspectral images. Instead of estimating noise fraction by the nearest neighborhood information (within a sliding window), the proposed method explores the use of image segmentation. The approach benefits both noise fraction estimation and information preservation, and enables a significant improvement for classification. Experimental results on two real hyperspectral images demonstrate the efficiency of the proposed method. Compared to conventional KMNF, the improvements of the method on two hyperspectral image classification are 8 and 11%. This nonlinear feature extraction method can be also applied to other disciplines where high-dimensional data analysis is required
Unsupervised spectral sub-feature learning for hyperspectral image classification
Spectral pixel classification is one of the principal techniques used in hyperspectral image (HSI) analysis. In this article, we propose an unsupervised feature learning method for classification of hyperspectral images. The proposed method learns a dictionary of sub-feature basis representations from the spectral domain, which allows effective use of the correlated spectral data. The learned dictionary is then used in encoding convolutional samples from the hyperspectral input pixels to an expanded but sparse feature space. Expanded hyperspectral feature representations enable linear separation between object classes present in an image. To evaluate the proposed method, we performed experiments on several commonly used HSI data sets acquired at different locations and by different sensors. Our experimental results show that the proposed method outperforms other pixel-wise classification methods that make use of unsupervised feature extraction approaches. Additionally, even though our approach does not use any prior knowledge, or labelled training data to learn features, it yields either advantageous, or comparable, results in terms of classification accuracy with respect to recent semi-supervised methods
- …