4 research outputs found

    Hyperspectral and Multispectral Image Fusion using Optimized Twin Dictionaries

    Get PDF
    Spectral or spatial dictionary has been widely used in fusing low-spatial-resolution hyperspectral (LH) images and high-spatial-resolution multispectral (HM) images. However, only using spectral dictionary is insufficient for preserving spatial information, and vice versa. To address this problem, a new LH and HM image fusion method termed OTD using optimized twin dictionaries is proposed in this paper. The fusion problem of OTD is formulated analytically in the framework of sparse representation, as an optimization of twin spectral-spatial dictionaries and their corresponding sparse coefficients. More specifically, the spectral dictionary representing the generalized spectrums and its spectral sparse coefficients are optimized by utilizing the observed LH and HM images in the spectral domain; and the spatial dictionary representing the spatial information and its spatial sparse coefficients are optimized by modeling the rest of high-frequency information in the spatial domain. In addition, without non-negative constraints, the alternating direction methods of multipliers (ADMM) are employed to implement the above optimization process. Comparison results with the related state-of-the-art fusion methods on various datasets demonstrate that our proposed OTD method achieves a better fusion performance in both spatial and spectral domains

    Hyperspectral and Multispectral Image Fusion using Cluster-based Multi-branch BP Neural Networks

    No full text
    Fusion of the high-spatial-resolution hyperspectral (HHS) image using low-spatial- resolution hyperspectral (LHS) and high-spatial-resolution multispectral (HMS) image is usually formulated as a spatial super-resolution problem of LHS image with the help of an HMS image, and that may result in the loss of detailed structural information. Facing the above problem, the fusion of HMS with LHS image is formulated as a nonlinear spectral mapping from an HMS to HHS image with the help of an LHS image, and a novel cluster-based fusion method using multi-branch BP neural networks (named CF-BPNNs) is proposed, to ensure a more reasonable spectral mapping for each cluster. In the training stage, considering the intrinsic characteristics that the spectra are more similar within each cluster than that between clusters and so do the corresponding spectral mapping, an unsupervised clustering is used to divide the spectra of the down-sampled HMS image (marked as LMS) into several clusters according to spectral correlation. Then, the spectrum-pairs from the clustered LMS image and the corresponding LHS image are used to train multi-branch BP neural networks (BPNNs), to establish the nonlinear spectral mapping for each cluster. In the fusion stage, a supervised clustering is used to group the spectra of HMS image into the clusters determined during the training stage, and the final HHS image is reconstructed from the clustered HMS image using the trained multi-branch BPNNs accordingly. Comparison results with the related state-of-the-art methods demonstrate that our proposed method achieves a better fusion quality both in spatial and spectral domains
    corecore