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Index Terms—hyperspectral image fusion, optimized twin 
dictionaries (OTD), spectral dictionary, spatial dictionary. 
 

 
Abstract—Spectral or spatial dictionary has been widely used in 

fusing low-spatial-resolution hyperspectral (LH) images and high- 
spatial-resolution multispectral (HM) images. However, only 
using spectral dictionary is insufficient for preserving spatial 
information, and vice versa. To address this problem, a new LH 
and HM image fusion method termed OTD using optimized twin 
dictionaries is proposed in this paper. The fusion problem of OTD 
is formulated analytically in the framework of sparse 
representation, as an optimization of twin spectral-spatial 
dictionaries and their corresponding sparse coefficients. More 
specifically, the spectral dictionary representing the generalized 
spectrums and its spectral sparse coefficients are optimized by 
utilizing the observed LH and HM images in the spectral domain; 
and the spatial dictionary representing the spatial information 
and its spatial sparse coefficients are optimized by modeling the 
rest of high-frequency information in the spatial domain. In 
addition, without non-negative constraints, the alternating 
direction methods of multipliers (ADMM) are employed to 
implement the above optimization process. Comparison results 
with the related state-of-the-art fusion methods on various 
datasets demonstrate that our proposed OTD method achieves a 
better fusion performance in both spatial and spectral domains.  
 

I. INTRODUCTION 
yperspectral images can provide abundant useful spectral 
information, and are widely used in many applications, 

such as image classification and target detection [1]-[4]. 
However, the imaging process to achieve high spectral 
resolution is at the expense of spatial resolution [5]. Compared 
with hyperspectral images, multispectral images usually have 
much higher spatial resolution, but much fewer spectral bands. 
Fortunately, the spatial information lost in the hyperspectral 
imaging can be estimated by using a multispectral image over 
the same scene, through image fusion. In other words, a 
high-spatial-resolution hyperspectral (HH) image can be 
obtained, by fusing a low-spatial-resolution hyperspectral (LH) 
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image with a high-spatial-resolution multispectral (HM) image 
over the same scene. 

Hyperspectral and multispectral image (HS-MS) fusion 
methods can be roughly divided into six groups: pansharpening 
based methods, spatial dictionary based methods, spectral 
dictionary based methods, Bayesian based methods, tensor 
decomposition based methods, and deep learning base methods. 
More specifically, pansharpening based methods have been 
proposed to improve the spatial resolution of a multispectral 
image by fusing the multispectral image with a panchromatic 
(PAN) image of higher spatial resolution [6][7]. Using a 23 
coefficients polynomial filter, the EXP method [8] has achieved 
a sole interpolation of the LHS image. Aiazzi et al. [9] have 
proposed a component substitution based pansharpening 
method, which is integrated into the Gram-Schmidt spectral 
sharpening method [10]. Liu et al. [11] have proposed a 
multiresolution analysis based method for pansharpening, 
utilizing the solar radiation and landsurface reflection model. 
Furthermore, a hypersharpening technique is involved by 
Yokoya et al. [12], to adapt the pansharpening to the HS-MS 
fusion problem. For the WorldView-3 data, an improved 
hypersharpening method of [13] is proposed by Selva et al. [14], 
which introduces the histogram matching operation into the 
synthesized band variant. Based on the sparse representation 
theory, Vicinanza et al. [15] have proposed a pansharpening 
method, exploiting the details self-similarity through the scales. 
Grohnfeldt et al. [18] expanded the pansharpening methods 
proposed in [16][17] to the HS-MS fusion problem, which 
simplifies the hyperspectral and multispectral image fusion as 
several pansharpening processes.  

For the further improvement of the fusion performance, 
spatial dictionary based methods have been investigated. Zhao 
et al. [19] have proposed a collaborative representation based 
fusion method, using a local adaptive spatial dictionary pair 
that consists of each patch and its neighboring patches, which 
can also reduce the computational complexity of the method 
proposed in [18]. Additionally, a spectral unmixing and 
Bayesian sparse representation based method has been 
proposed by Ghasrodashti et al. [20], to improve the spatial 
resolution of LH image by using an HM image over the same 
scene and an additional PAN image from an unrelated scene, in 
which two weighted spatial dictionaries are created, one from 
the HM image and the other from the PAN image. 

As the spatial dictionary based methods may not perform 
well in spectral preservation, spectral dictionary based methods 
have been proposed to further improve the fusion quality in the 
spectral domain. Relying on the linear mixing model [21], a 
method of learning spectral dictionary has been proposed by 
Huang et al. [22], where the pure spectral signatures are 
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constructed by a trained spectral dictionary. Yokoya et al. [23] 
have proposed a fusion method that decomposes the 
hyperspectral image into abundances and endmembers, i.e., a 
special form of spectral dictionary. Simoes et al. [24] have 
proposed an LH and HM image fusion method using total 
variation regularization, in which the spectral dictionary 
consists of endmember spectral signatures. Akhtar et al. [5] 
have offered a sparse representation approach with non- 
negative constraints, where each atom in the spectral dictionary 
is regarded as a pure spectral signature. Similarly, a 
non-negative structured sparse representation method has been 
proposed by Dong et al. [25], which exploits the strong spectral 
correlations in similar neighbors. Han et al. [26] have proposed 
a fusion method by using sparse representation without non- 
negative constraints, where the spectral dictionary consists of 
mixed spectral signatures. In addition, to utilize the spectral and 
spatial information simultaneously, Nezhad et al. [27] have 
proposed a fusion method with spectral unmixing and sparse 
coding, in which a spectral dictionary is constructed directly by 
using the endmembers of the LH image, and a spatial dictionary 
is created by using several HM or PAN images from unrelated 
scenes. Yi et al. [28] have also proposed a fusion method, using 
a spectral dictionary created from the endmembers of the LH 
image, but the spatial dictionary is trained using the HM image 
only. 

Using the prior distribution in the observed scene, such as 
Gaussian priors, Bayesian based methods have been proposed 
to build various estimators [29]. Wei et al. [30] have proposed 
an HS-MS fusion method with a carefully designed sparse 
regularization term. In addition, a fast fusion method has also 
been proposed by solving a Sylvester equation associated with 
Bayesian estimator [31]. 

Based on tensor decomposition, Zhang et al. [32] have 
established a low-rank tensor decomposition model for the 
HS-MS fusion, using two graphs for the spatial correlation and 
the spectral structure preservation. Li et al. [33] have proposed 
a coupled sparse tensor factorization based fusion method, 
utilizing a sparse prior on the core tensor.  

As for the deep learning based methods, Palsson et al. [34] 
have firstly proposed a 3-D convolutional neural network 
(CNN) method to fuse LH and HM images into an HH image, 
by learning the spatial decimation filter. A pyramid fully CNN 
based method has been proposed by Zhou et al. [35], which is 
made up of encoder and pyramid fusion sub-networks. Han et 
al. [36] have proposed a multi-branch BP neural network based 
HS-MS fusion method, to establish the spectral mapping for 
each cluster. 

As discussed above, by using the spatial dictionary, the 
HS-MS fusion methods proposed in [18]-[20] can exploit 
detailed structure information, while the spectral preservation 
has not been taken into consideration. On the other hand, for the 
spectral dictionary based methods, the spectral dictionary is 
usually created by using the pure spectral signatures of 
endmembers [22]-[25][27][28], which are somehow difficult to 
determine, particularly for the small and weak targets in 
practical applications. Although in the spectral unmixing, 
constraint based priors can be used to ensure the uniqueness of 
decomposition [21], but it is quite challenging to design and 
evaluate a proper prior. To preserve both spectral and spatial 
information simultaneously, in addition to using the spectral 

dictionary, related or unrelated high-spatial-resolution images 
are often used to create an additional penalty term indirectly 
[27][28], but the high-frequency spatial information such as 
edges and textures may be ignored. 

To deal with the above issues, this paper proposes a fusion 
method with optimized twin dictionaries (named as OTD), to 
obtain the HH image by fusing an LH image with an HM image 
over the same scene. Firstly, an optimization of the spectral 
dictionary and its sparse coefficients has been formulated and 
derived theoretically, by utilizing the spectral information 
provided by the LH and HM images. Here, using the alternating 
direction method of multipliers (ADMM) [37] without 
non-negative constraints, we can consider each atom in the 
spectral dictionary as a more generalized spectral signature, 
instead of a pure spectral signature. Then, an optimization of 
the spatial dictionary and its corresponding sparse coefficients 
is also derived theoretically, and will be estimated by the K- 
singular value decomposition (K-SVD) [38] and ADMM [37] 
methods, utilizing high-frequency information supplied by the 
image patches from the rest of HM and LH image. In this way, 
each atom in the spatial dictionary represents the high- 
frequency information, such as edges and textures. Finally, 
using the optimized twin dictionaries and their corresponding 
sparse coefficients, a final fused HH image can be obtained. 

The main contributions of this paper are listed as follows. 
1) A new optimized twin dictionaries scheme for the LH 

and HM image fusion is proposed for the first time. The 
scheme can use both of the spectral and spatial 
information directly. 

2) An optimized spectral dictionary is derived theoretically, 
to utilize the spectral information provided by the LH 
and HM images, where each atom represents a more 
generalized spectral signature. 

3) An optimized spatial dictionary representing the 
high-frequency information is also derived theoretically, 
to further utilize the remaining spatial information 
unrepresented by the spectral dictionary. 

The rest of this paper is organized as follows. Section II 
presents the proposed OTD method. Experimental results and 
analyses on different datasets are provided in Section III, 
followed by the conclusions in Section IV. 
 

II. PROPOSED METHOD 
A. Problem Formulation 

The HH image  can be estimated by fusing an 
LH image  with an HM image  
over the same scene, where  and  ( ) denote the 
numbers of spectral bands, and  and  ( ) denote the 
numbers of pixels per band, in  and , respectively. 
Moreover, the observed images  and  can be expressed 
as degraded versions of the desired HH image  as 
 

, (1) 
, (2) 

 
where  denotes the blurring and down sampling 
operator,  denotes the spectral response function 
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of the , and  and  denote the zero-mean Gaussian 
noises in the observation model, which is a popular assumption 
in the imaging process modelling [31][25]. As the estimation of 

 is an ill-posed inverse problem, the sparse representation 
framework is adopted for its efficiency in solving Eq.(1) and 
Eq.(2). That is, the HH image  can be represented as a linear 
combination of the spectral dictionary , 
 

, (3) 
 
where  denotes the spectral sparse coefficients 
matrix, and  denotes the error matrix that cannot 
be represented by the spectral dictionary . Here, we found 
that the remaining spatial information, which cannot be fully 
represented by the spectral dictionary , can still be dug out 
from the error matrix , i.e.,  can be further represented by a 
spatial dictionary  with image patches of size 

 as 
 

, (4) 
 
where  is the sparse coefficients matrix in the 
image patch domain. Symbol “ ” denotes the equivalent 
expression of multiplication in the image patch domain as 
shown in Fig.1, which is a popular symbol in image blocking 
[39][40]. Substituting Eq.(4) into Eq.(3) leads to the following 
equation: 
 

 . (5) 
 

Therefore, the HH image  can be expressed by the twin 
dictionary denoted by  and . We can see that  and  
are not two completely independent dictionaries:  is derived 
from the whole image of  and , while  is derived by 
only using the remaining spatial information of  that cannot 
be represented by the . This is the reason why we called 
them as twin dictionaries. Furthermore, each atom in the 
spectral dictionary  can be considered as a more generalized 
spectral signature, no longer a pure spectral signature; the 
spatial dictionary  can represents the high-frequency spatial 
information such as edges and textures, utilizing the remaining 
spatial information unrepresented by the spectral dictionary. 
Substituting Eq.(3) and Eq.(4) into Eq.(1) and Eq.(2) leads to 
the following equations: 
 

, (6) 
, (7) 

, (8) 
, (9) 

 
where  and  denote the error 
matrices that cannot be expressed by using the spectral 
dictionary  in  and , respectively. In addition, Eq.(8) 
and Eq.(9) can be rewritten in the image patch domain: 
 

, (10) 

 
Fig.1 Equivalent expression of multiplication denoted by symbol “ ”. 

, (11) 
 
where  and  denote the stretched patches of  and , 

 and  denote the equivalent expressions of  and , and 
 and  denote the equivalent expressions of  and  

in the image patch domain, respectively.  
In the following subsections, the two parts of our proposed 

method will be discussed in more detail. Firstly, spectral 
dictionary  and spectral sparse coefficients  are optimized 
by using the spectral information provided by the observed 
image  and . Secondly, spatial dictionary  and 
spatial sparse coefficients  are optimized by utilizing the 
remaining spatial information left by the spectral dictionary, i.e. 

 and . 

B. Spectral Dictionary Optimization 
To leverage the high-spectral resolution of and the 

high-spatial resolution of , the spectral dictionary  and 
coefficients  can be optimized following Eq.(6) and Eq.(7). 
Considering the sparsity of  and replacing the -norm of  
with a natural convex approximation, i.e. -norm, we can get a 
convex relaxation as 
 

, 
(12) 

 
where  is used to balance the trade-off between the spatial 
error and the spectral error,  denotes the regularization 
parameter to achieve the tradeoff between the representation 
error and the solution sparsity. The above biconvex 
optimization can be efficiently solved by solving the following 
two subproblems iteratively, a strategy widely used in various 
applications [41][42] with convergence guarantee [43]: 
 

, (13) 

, (14) 
 
where  denotes the objective function in Eq.(12), and 

 denotes the iteration number.  
With a fixed spectral sparse coefficients matrix , the 

spectral dictionary  can be optimized according to Eq.(13). 
More specifically, Eq.(13) can be rewritten as 
 

,  (15) 

 
where . Note that it is much more 
challenging to minimize the sum of the two terms in Eq.(15) 
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than minimizing each term separately. Here, the splitting 
strategy is exploited, and the alternating direction method of 
multipliers (ADMM) [37] technique is used to solve this 
convex problem, which has been widely used in various 
applications [25][26][42].  Firstly, we reformulate Eq.(15) as 
 

 (16) 

 
where the splitting variable is . Then, the augmented 
Lagrangian function of Eq.(16) becomes 
 

,  (17) 

 
where  denotes the Lagrangian multiplier 
( ). Similarly to the optimization process of Eq.(12), the 
above augmented Lagrangian function can be minimized by 
solving the following two subproblems iteratively: 
 

 (18) 

 
which can be rewritten as 
 

,

(19) 
 
where the Lagrangian multiplier is updated by 
 

. (20) 
 
Let  and  equal to zero respectively, the 
optimization problem in Eq.(19) can be written as 
 

.

(21) 
 
Then, the spectral dictionary  can be optimized analytically 
as 
 

   

.

   

(22) 

 

C. Spectral Sparse Coefficients Optimization 
With the optimized spectral dictionary , Eq.(14) can be 

rewritten as 
 

(23) 
 
where  denotes the degradation in the spectral 
domain, i.e., the low spectral resolution dictionary. Similarly to 
the optimization of Eq.(15), the splitting strategy is also used to 
minimize each term in Eq.(23) separately, instead of the sum of 
the three terms. To apply ADMM [37], we reformulate Eq.(23) 
as 
 

  
(24) 

 
where  and  are the splitting variables. Then, 
by using Lagrangian multipliers  and 

 ( ), the coefficients matrix  can be 
estimated by ADMM analytically:  
 

.

 (25) 
 

D. Spatial dictionary Optimization 
When the spectral dictionary  and the sparse codes  

are obtained, the spatial dictionary  can be estimated by 
utilizing the remaining spatial information provided by  and 

. Since the equivalent matrixes  and  in the image 
patch domain are challenging to obtain, we proposed a spatial 
dictionary optimization method without using  and  as a 
prior. Then, Eq.(10) can be rewritten as follows with spectral 
degradation: 
 

 . (26) 
 
As shown in Eq.(11) and Eq.(26), the spatial dictionary  and 
the degraded spatial dictionary  can sparsely represent the 

 and , respectively. Hence the spatial dictionary  
can be estimated by minimizing the following equation with 

: 
 
 

 (27) 
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Fig.2 Overall framework of our proposed OTD method. 

Algorithm 1 Proposed OTD Algorithm 
Input: , , , , , , , , , , , , ; 
For  
  Compute  via Eq.(22); 
  Update the Lagrangian multipliers  via Eq.(20); 
  Compute  via Eq.(25); 
End 

; 
; 

; 
; 

Compute  via Eq.(28); 
For  
  Compute  via Eq.(32); 
End 

 
; 

Output:  as the fused . 
 
which can be further rewritten as 
 

， (28) 

 

where , ,  ( ) denotes the 

weighting factor. The above nonconvex optimization with an  
constraint can be efficiently solved by the K-SVD algorithm 
[38] with the greedy algorithm orthogonal matching pursuit 
[44], which has been widely used in various applications 
[22][45]. In this case, the spatial dictionary , and 
the degraded version  can be estimated 
simultaneously. In addition, the degraded sparse coefficients 

 can be also obtained in the process of the K-SVD 
algorithm [38]. 

E. Spatial Sparse Coefficient Optimization 
With the optimized spatial dictionary , the spatial sparse 

coefficients  can be optimized by using Eq.(10) and Eq.(11). 
Considering the sparsity of  and replacing the -norm with 
the -norm, we can attain a convex relaxation: 
 
  .

 (29) 
 
With the estimated degraded spatial dictionary  and the 
estimated degraded sparse coefficients  in the last 

subsection, the above optimization problem can be simplified 
as 
 

 . (30) 
 
Similarly to the optimization of Eq.(15) and Eq.(23), the 
splitting strategy is used to minimize each term separately in 
Eq.(30). To apply ADMM [37], we reformulate Eq.(30) as 
 

 (31) 

 
where  is the splitting variable. Then, with ADMM, the 
spatial coefficients matrix  ban be optimized analytically as  
 

 .

 (32) 
 
where  denotes the Lagrangian multiplier 
( ).  

It can be seen that, with the optimized twin dictionaries, i.e. 
 and , and the corresponding coefficients matrices, i.e.  

and , both spectral and high-frequency spatial information 
can be integrated into the final HH images analytically by using 
our proposed method. The overall framework of our proposed 
OTD method is illustrated in Fig.2, and the overall algorithm 
for our proposed OTD method is summarized in Algorithm 1. 
 

III. EXPERIMENTAL RESULTS 
To evaluate the performance of our proposed OTD method, 

extensive experiments are conducted in comparison with the 
EXP method [8], the improved hypersharpening method using 
synthesized band (IHSB) [14], the smoothing filtered-based 
intensity modulation hypersharpening (SFIMHS) method [12], 
Gram-Schmidt adaptive (GSA) method [9], the collaborative 
representation using local adaptive dictionary pair (LACRF) 
method [19], the generalization of simultaneous orthogonal 
matching pursuit (G-SOMP+) method [5], the hyperspectral 
superresolution (Hysure) method [24], the fast fusion based on 
Sylvester equation (FUSE) method [31], the non-negative 
structured sparse representation (NSSR) method [25], and the 
non-factorization sparse representation and error matrix 
estimation (NFSREE) method [26] on different image datasets. 
The EXP and the IHSB methods are used as the baseline of the 
pansharpening based methods in most of the visual assessments. 
Furthermore, to evaluate the quality of the fused HH images 
obtained by these methods, six full-reference quality metrics 
are used, including the mean square error (MSE) [46], the 
peak-signal-to-noise ratio (PSNR) [46], the universal image 
quality index (UIQI) [31], the spectral angle mapper (SAM) 
[31], the relative dimensionless global error in synthesis 
(ERGAS) [31] and the averaged structural similarity (ASSIM)   

Page 5 of 27

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



TIP-20724-2019.R2 6 

       
     (a) LH                   (b) HM                    (c) fused HH 
Fig. 3 False color images of (a) the LH image, (b) the HM image, (c) 

the fused HH image by using our proposed OTD method. 

Table 1 Averaged MSE, PSNR, SAM, UIQI, ERGAS and SSIM 
results on the AVIRIS dataset. 

 MSE PSNR UIQI SAM ERGAS ASSIM TIME/s 
EXP 14.6650 36.4680 0.8533 3.7260 2.6524 0.8869 0.22 
IHSB 22.2070 34.6659 0.9396 1.8821 3.1422 0.9728 2.69 

SFIMHS 11.0640 37.6917 0.9071 3.1555 2.4972 0.9553 0.23 
GSA 3.5330 42.6494 0.9682 3.0960 1.3792 0.9802 0.79 

LACRF 0.9574 48.3199 0.9858 1.8461 0.7789 0.9922 2.87 
G-SOMP+ 0.8151 49.0188 0.9881 1.7622 0.7758 0.9961 75.33 

Hysure 0.2863 53.5630 0.9924 0.9454 0.4604 0.9979 69.05 
FUSE 0.3183 53.1025 0.9923 0.9980 0.4704 0.9981 1.89 
NSSR 0.6958 49.7059 0.9949 1.5130 0.6320 0.9967 66.13 

NFSREE 0.3087 53.2347 0.9921 1.0133 0.4613 0.9976 7.71 
OTD 0.1406 56.6519 0.9958 0.7477 0.3149 0.9985 41.77 

Table 2 Comparisons with that only using spectral dictionary. 
 MSE PSNR UIQI SAM ERGAS SSIM TIME/s 

Only  0.5452 50.7650 0.9900 1.4503 0.5828 0.9978 7.89 
OTD 0.1406 56.6519 0.9958 0.7477 0.3149 0.9985 41.77 

 

 
band 10              band 35             band 80             band 90 

Fig.4 The ground truth (upper row) and the estimation results of  
using spatial dictionary  (lower row) in typical bands. 

defined as , where  is the 
SSIM [46] of band . All of the above methods are conducted 
by using MATLAB R2015b on a computer with a 3.60 GHz 
CPU and 16 GB RAM. 

A. Comparison Results on the AVIRIS Dataset  
In this part of experiment, the hyperspectral image from the 

AVIRIS airborne system [47] on July 5, 1996 is used as the 
ground-truth of HH image with a dimension of 300×300×93, 
and some of the original bands 1-2, 105-115, 150-170, 223-224 
have been removed due to the serious effect of water absorption. 
The IKONOS-like spectral response function [31] is used in 
this experiment, which covers visible and near infrared 

spectrum ( ). Thus, HM image generated using Eq.(2) 
with a dimension of 300×300×4, is shown as a false color 
image in Fig.3(b), in which the first three bands of the 
generated HM image are corresponding to the blue, green and 
red channels, respectively. The operator of blurring and down 
sampling matrix  is generated with a 5×5 Gaussian kernel 
with standard deviation  and the downsampling rate is 
5 in both vertical and horizontal directions. Consequently, LH 
image generated using Eq.(1) with a dimension of 50×50×93, is 
shown as a false color image in Fig.3(a), where bands 49, 24 
and 11 of the LH image are used as the red, green and blue 
channels, respectively. In addition, the non-overlapped image 
patches with a dimension of 10×10 are used in the spatial 
domain; the number of columns in spectral and spatial 
dictionary  and  are set to 100 and 1000, respectively; the 
maximum numbers of iterations  and  are both set to 10; 
the parameters in the augmented Lagrangian functions are 

, , , , 
. For fair comparisons, all of the other compared 

methods use the same blurring and down sampling process as 
described above. In addition, the number of columns in spectral 
dictionary is set to 100 in the compared G-SOMP+, NSSR, and 
NSFREE methods, which is the same to that of our proposed 
method. The other typical parameters of the compared methods 
are set according to their original articles and codes for better 
fusion performances, such as the numbers of iterations in the 
NSSR method [25] is set to 26, the parameters in the augmented 
Lagrangian functions in the NFSREE method [26] are set to 

, , , respectively. 
The averaged MSE, PSNR, SAM, UIQI, ERGAS and 

ASSIM results are shown in Table 1. In addition, to exclude the 
corrupted pixels at the border, 2 columns of pixels at each 
border are excluded when calculating the full-reference quality 
metrics. As can be seen in Table 1, our proposed OTD method 
shows better fusion results in both spatial and spectral domains 
than all the other fusion methods. Specifically, SAM in Table 1 
is reduced by more than 0.19 by our proposed OTD method, 
which is much significant for hyperspectral images. 
Simultaneously, PSNR is also improved by more than 3.1dB by 
the OTD method, which indicates a better performance in 
spatial preservation. The computing time in the last column of 
Table 1 shows that pansharpening based methods in the first 
four rows, especially the EXP method, have better performance 
in terms of computing time, while our proposed OTD method is 
only faster than the G-SOMP+, Hysure and NSSR methods, 
due to its double complexity of the twin dictionaries 
optimization. To further evaluate the efficiency of the spatial 
dictionary in our proposed OTD method, comparisons with the 
fusion method only using spectral dictionary  are shown in 
Table 2. As can be seen in Table 2, the spatial dictionary 
improves the performance of the fused HH image over 0.70 in 
SAM, and over 5.8dB in PSNR.  

Moreover, Fig.4 shows the ground truth and the estimation 
of matrix  using the spatial dictionary  in typical bands. 
The high similarity between the upper and lower row also 
indicates the efficiency of the spatial dictionary in our proposed 
method. Furthermore, Fig.5 shows the false-color visual results 
of different methods on the fused HH image with one region 
zoomed. Specifically, bands 49, 24 and 11 in the fused HH 
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image are used as the red, green and blue channels, respectively. 
It can be seen from Fig.5 that our proposed method performs 
better both in the spatial detail reconstruction and spectral 
preservation, which is obviously better than the EXP, IHSB and 
G-SOMP+ methods. The fusion results in the spectral domain 
on typical pixels are shown in Fig.6. As can be seen in Fig.6, 
our proposed method shows an outperformance in spectral 
preservation, which is apparent in comparison with the IHSB, 
SFIMHS, GSA and FUSE methods. 

To easily discern the differences between different methods 
visually, Fig.7 shows the errors of the fused HH images in MSE 
and SAM metrics, respectively. In Fig.7, MSE images 
visualized the magnitude of the error at each pixel in band 30, 
and SAM images visualized the spatial distribution of spectral 
angle errors for the whole image. Compared with the related 
fusion methods only using spatial or spectral dictionary, our 
proposed OTD method shows an obvious improvement in the 
fusion performance, particularly in spatial preservation shown 
in the upper row of column (h) in Fig.7, which indicates the 
significance of using the spatial dictionary. Our proposed OTD 
method also shows a better performance in spectral 
reconstruction, with the lowest SAM than the other methods. 

B. Comparison Results on Two Other Dataset  
In this part of experiment, the hyperspectral image from 

APEX [48] developed by a Swiss-Belgian consortium on 
behalf of ESA is used with a dimension of 512×614×224. 
Another hyperspectral image dataset, Pavia Center, acquired 
with ROSIS (a sensor of DLR) [49], is also used with a 
dimension of 1096×1096×102. Due to the serious effect of 
water absorption and computational complexity, just 300×300× 
93 of the APEX and Pavia Center datasets are used as the 
ground truth of HH images. In addition, the spectral response 
function , the blurring and down-sampling operator  and all 
of the parameters are the same with Section III-A. 

Fig.8 and Fig.9 show the visible fusion results on the APEX 
and Pavia Center datasets, respectively. The upper row shows 
the MSE of each pixel in band 30, indicating the distribution of 
errors in the spatial domain. As can be seen in Fig.8 and Fig.9, 
our proposed method performs the best in the spatial 
information preservation with less error in MSE. The lower 
rows of Fig.8 and Fig.9 show the SAM of each spectrum, which 
indicates the distribution of spectral distortion. As shown in 
Fig.8 and Fig.9, the HH image fused by our proposed OTD 

 
(a) Ground-truth  (b) EXP         (c) IHSB       (d) LACRF   (e) G-SOMP+  (f) Hysure       (g) FUSE       (h) NSSR      (i) NFSREE   (j) our OTD 

Fig. 5 False-color fusion results on the AVIRIS dataset. Upper row: whole band; lower row: close up. 
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                                                 (a) pixel (165, 289)                                                                            (b) pixel (103, 163) 

Fig.6 Fusion results in the spectral domain on (a) pixel (165, 289) and (b) pixel (103, 163) in the AVIRIS dataset. 

 
       (a) EXP           (b) IHSB       (c) LACRF     (d)  G-SOMP+    (e) Hysure         (f) FUSE         (g) NSSR        (h) NFSREE      (i) our OTD 

Fig.7 Error images in MSE on band 30 (upper row) and SAM for the whole image (lower row) of the AVIRIS dataset. 
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Table 3 Averaged MSE, PSNR, SAM, UIQI, ERGAS and SSIM 
results on different datasets. 

 MSE PSNR UIQI SAM ERGAS ASSIM TIME/s 
APEX Dataset 

EXP 261.0444 23.9637 0.8052 8.3134 7.0181 0.6040 0.51 
IHSB 46.7318 31.4347 0.9690 4.2644 2.9379 0.9559 2.49 

SFIMHS 239.1973 24.3432 0.8550 7.0293 7.0799 0.8350 0.27 
GSA 80.3115 29.0830 0.9565 10.5150 4.0725 0.8864 0.75 

LACRF 14.9218 36.3926 0.9824 4.6390 2.9087 0.9620 2.45 
G-SOMP+ 4.2817 41.8146 0.9958 1.7790 1.8289 0.9941 75.32 

Hysure 2.5733 44.0258 0.9975 1.5412 1.3261 0.9946 68.57 
FUSE 1.6307 46.0069 0.9982 1.3551 1.1759 0.9960 1.58 
NSSR 3.4827 42.7117 0.9965 1.8276 1.5976 0.9943 64.53 

NFSREE 1.6884 45.8561 0.9981 1.3872 1.1844 0.9955 7.51 
OTD 0.9914 48.1682 0.9989 1.1372 1.0070 0.9970 42.81 

Pavia Center Dataset 

EXP 154.9523 26.2288 0.8278 5.6700 5.5012 0.6531 0.47 
IHSB 25.4769 34.0693 0.9743 3.6085 2.2388 0.9642 2.80 

SFIMHS 167.3076 25.8956 0.8547 5.0707 5.6463 0.8096 0.34 
GSA 57.6165 30.5253 0.9577 11.2709 3.2626 0.9085 0.66 

LACRF 7.5854 39.3310 0.9918 3.7360 1.7774 0.9812 2.55 
G-SOMP+ 3.9860 42.1254 0.9958 2.1983 1.3676 0.9919 66.56 

Hysure 2.2544 44.6005 0.9977 1.9453 1.0087 0.9935 65.18 
FUSE 1.5644 46.1872 0.9983 1.9135 0.8691 0.9947 1.37 
NSSR 2.6073 43.9690 0.9973 2.2141 1.0918 0.9939 62.23 

NFSREE 1.7973 45.5846 0.9981 1.9857 0.8985 0.9943 7.44 
OTD 1.1946 47.3584 0.9986 1.7431 0.7779 0.9953 40.49 

method has the highest accuracy in spectral preservation. In 
addition, after excluding the corrupted pixels at the borders, the 
fusion results on the APEX and Pavia Center datasets are 
summarized in Table 3. It can be seen that, with the optimized 

twin dictionary, our proposed OTD method shows much better 
fusion performance both in the spatial and spectral domain on 
these two commonly used datasets. 

C. Discussion on Parameter Effects 
To evaluate the effect and sensitivity of the key parameters 

in our proposed method on the fusion performance,  some of the 
key parameters are varied on the AVIRIS, APEX and Pavia 
Center datasets, such as , the number of columns in the 
spectral dictionary; , the number of columns in the spatial 
dictionary; , the size of image patches; the regularization 
parameters , ,  and ; the signal-to-noise ratio (SNR) for 
Gaussian noise; and the computing time on parameters  and 

. More importantly, the experimental results of a reversed 
procedure, i.e., first applying the spatial optimization and then 
applying the spectral optimization, are also performed and 
analyzed in this section to show the importance of spectral 
information. 

Fig.10(a) shows the effect of the parameter  on the PSNR 
on the three different datasets. The similar trend of the three 
PSNR curves indicates that our proposed method performs 
stably when the parameter  is larger than 100. The effects of 
regularization parameters  and  on the fusion results are 
shown in Figs.10(b) and (c) in terms of PSNR. It turns out that, 
when the parameter  is between  and , and the 
parameter  is larger than , our proposed method has a 
better fusion performance on the three datasets. 

As for the optimization in the spatial domain, Fig.11(a) 
plots the PSNR curve of the fused HH image as a function of 
the parameter  . It shows that our proposed method has a 
stable performance when  is larger than 800 on the three 
datasets. In addition, the improvement in PSNR is limited, 
when  is larger than 1000. Figs.11(b) and (d) plot the PSNR 

 
      (a) EXP          (b) IHSB       (c) LACRF     (d)  G-SOMP+    (e) Hysure        (f) FUSE          (g) NSSR       (h) NFSREE     (i) our OTD 

Fig. 8 Error images in MSE on band 30 (upper row) and SAM for the whole image (lower row) of the APEX dataset. 

 
      (a) EXP          (b) IHSB       (c) LACRF     (d)  G-SOMP+    (e) Hysure        (f) FUSE          (g) NSSR       (h) NFSREE     (i) our OTD 

Fig.9 Error images in MSE on band 30 (upper row) and SAM for the whole image (lower row) of the Pavia Center dataset. 
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curves as a function of parameters  and , respectively. It 
turns out that, when the parameter  is less than 2.5, and the 
parameter  is less than , our proposed method shows a 
better fusion performance even on different datasets. 
Additionally, Fig.11(d) shows the fusion performance with 
different size of image patches  of the HM image, here we 
should mentioned that, as the downsampling rate is set to 5, the 
starting patch size 10 of the HM image is determined by the 
smallest corresponding patch size 2 of the LH image. As can be 
seen that, with the increase of , the PSNR curve shows a 
downward trend. In this case, a small size of image patches is 
selected for better fusion performance. Due to the certain 
similarity between the blue, black and red curves in Figs.10 and 
11, it can be indicated that our proposed OTD method has a 
stable performance on different datasets. Thus, the parameter 
settings are quite universal and applicable to most common 
scenarios. 

Fig.12 shows the fusion performances of our proposed 
OTD method with different SNRs. Among the three different 
datasets we can see that, without a denoising process or a 
specific consideration of the added noise assumption, our 
proposed OTD method shows a stable reconstruction ability, 
when SNR is higher than 45dB.  

Table 4 Comparisons with that first applying the spatial optimization 
on the AVIRIS dataset. 

 MSE PSNR UIQI SAM ERGAS ASSIM 

OTDrev 0.2916 53.4833 0.9948 0.9946 0.4063 0.9975 
OTD 0.1406 56.6519 0.9958 0.7477 0.3149 0.9985 

 
As the computing time is also a key parameter for the fusion 

procedure, Fig.13 shows the computing time curves as a 
function of the typical parameters  and . As can be seen in 
Fig.13, with more atoms in the spectral or spatial dictionary, the 
computing time of our OTD method will increase accordingly, 
while the actual computing time also depends on the parameter 
settings in Section III-A. 

More importantly, in our proposed OTD method, the 
spectral optimization is followed by the spatial optimization 
just as the overall framework given in Fig.2, but a reversed 
procedure, i.e., first applying the spatial optimization and then 
applying the spectral optimization, is another possible way that 
can be considered. To show the difference between the two of 
them and the importance of spectral information for the 
targeted hyperspectral images, the main issues related to the 
reversed procedure will be briefly discussed. Here, the reversed 
procedure is named as OTDrev method, where the spatial 
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Fig.10 PSNR curves as a function of (a) the number of columns , (b) parameter , and (c) parameter   
on the AVIRIS (blue line), APEX (black line) and Pavia Center (red line) dataset. 

 
         (a) the number of columns                  (b) parameter                               (c) parameter                         (d)  parameter  

Fig.11 PSNR curves as a function of (a) the number of columns , (b) parameter , (c) parameter , and (d)  parameter   
on the AVIRIS (blue line), APEX (black line) and Pavia Center (red line) dataset. 
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Fig.12 PSNR curves as a function of SNR on 

the AVIRIS (blue line), APEX (black line) and 
Pavia Center (red line) dataset. 
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Fig.13 Computing time curves as a function of (a) the number of columns , (b) the number of 
columns  on the AVIRIS (blue line), APEX (black line) and Pavia Center (red line) datasets. 
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optimization utilizes the spatial information supplied by the 
image patches from the LH and HM images, and the spectral 
optimization utilizes the high-frequency spectral information 
provided by the rest of LH and HM image. To apply this 
reversed procedure, necessary modifications on the equations 
in Section II should be considered firstly. Especially, the spatial 
optimization in Eq.(27) and Eq.(29) should be modified as 
 
 ,

 (33) 
,  

(34) 
 
where  and  denote the stretched patches of  and 

, respectively. After the spatial optimization, the error 
matrices that cannot be expressed by the spatial dictionary  
in  and  will become  and 

, the spectral optimization in Eq.(12) 
can be further modified as 
 

.
 (35) 

 
With the same dataset and parameter settings in Section III-A, 
Table 4 shows a comparison result between OTD and OTDrev 
methods on the AVIRIS dataset. Compared with the OTDrev 
method, OTD method improves more than 3.1dB in PSNR, and 
reduces more than 0.24 in SAM, but OTDrev method is still the 
second best in most quality metrics than the other remaining 
methods in Table 1. It means that our proposed OTD method, 
which firstly applies spectral optimization, has a better 
performance in both spectral and spatial preservation. That is 
probably because the spectral information is much more 
important than the spatial information for the fusion problem 
between HM and LH image, if our target is set to the high- 
spatial-resolution hyperspectral image. 
 

IV. CONCLUSION 
In this paper, a new hyperspectral image fusion method 

using optimized twin dictionaries was proposed to obtain the 
HH image from fusing an LH and an HM image over the same 
scene. The optimized twin dictionaries, including one spectral 
dictionary and one spatial dictionary, can fully integrate the 
spectral information and the high-frequency spatial information 
into the final HH images simultaneously. The spectral 
dictionary, representing more generalized spectrums, is 
optimized by minimizing an augmented Lagrangian function 
using ADMM without non-negative constraints. The spatial 
dictionary, representing high-frequency information, is learned 
by the K-SVD algorithm from the remaining spatial 
information left by the spectral dictionary. Experimental results 
on various datasets demonstrate the superiority of our proposed 
OTD method in both spatial and spectral preservations than the 
other relative state-of-the-art fusion methods. 
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