740 research outputs found

    Hyperspectral Remote Sensing Data Analysis and Future Challenges

    Full text link

    A novel band selection and spatial noise reduction method for hyperspectral image classification.

    Get PDF
    As an essential reprocessing method, dimensionality reduction (DR) can reduce the data redundancy and improve the performance of hyperspectral image (HSI) classification. A novel unsupervised DR framework with feature interpretability, which integrates both band selection (BS) and spatial noise reduction method, is proposed to extract low-dimensional spectral-spatial features of HSI. We proposed a new Neighboring band Grouping and Normalized Matching Filter (NGNMF) for BS, which can reduce the data dimension whilst preserve the corresponding spectral information. An enhanced 2-D singular spectrum analysis (E2DSSA) method is also proposed to extract the spatial context and structural information from each selected band, aiming to decrease the intra-class variability and reduce the effect of noise in the spatial domain. The support vector machine (SVM) classifier is used to evaluate the effectiveness of the extracted spectral-spatial low-dimensional features. Experimental results on three publicly available HSI datasets have fully demonstrated the efficacy of the proposed NGNMF-E2DSSA method, which has surpassed a number of state-of-the-art DR methods

    Graph-based Data Modeling and Analysis for Data Fusion in Remote Sensing

    Get PDF
    Hyperspectral imaging provides the capability of increased sensitivity and discrimination over traditional imaging methods by combining standard digital imaging with spectroscopic methods. For each individual pixel in a hyperspectral image (HSI), a continuous spectrum is sampled as the spectral reflectance/radiance signature to facilitate identification of ground cover and surface material. The abundant spectrum knowledge allows all available information from the data to be mined. The superior qualities within hyperspectral imaging allow wide applications such as mineral exploration, agriculture monitoring, and ecological surveillance, etc. The processing of massive high-dimensional HSI datasets is a challenge since many data processing techniques have a computational complexity that grows exponentially with the dimension. Besides, a HSI dataset may contain a limited number of degrees of freedom due to the high correlations between data points and among the spectra. On the other hand, merely taking advantage of the sampled spectrum of individual HSI data point may produce inaccurate results due to the mixed nature of raw HSI data, such as mixed pixels, optical interferences and etc. Fusion strategies are widely adopted in data processing to achieve better performance, especially in the field of classification and clustering. There are mainly three types of fusion strategies, namely low-level data fusion, intermediate-level feature fusion, and high-level decision fusion. Low-level data fusion combines multi-source data that is expected to be complementary or cooperative. Intermediate-level feature fusion aims at selection and combination of features to remove redundant information. Decision level fusion exploits a set of classifiers to provide more accurate results. The fusion strategies have wide applications including HSI data processing. With the fast development of multiple remote sensing modalities, e.g. Very High Resolution (VHR) optical sensors, LiDAR, etc., fusion of multi-source data can in principal produce more detailed information than each single source. On the other hand, besides the abundant spectral information contained in HSI data, features such as texture and shape may be employed to represent data points from a spatial perspective. Furthermore, feature fusion also includes the strategy of removing redundant and noisy features in the dataset. One of the major problems in machine learning and pattern recognition is to develop appropriate representations for complex nonlinear data. In HSI processing, a particular data point is usually described as a vector with coordinates corresponding to the intensities measured in the spectral bands. This vector representation permits the application of linear and nonlinear transformations with linear algebra to find an alternative representation of the data. More generally, HSI is multi-dimensional in nature and the vector representation may lose the contextual correlations. Tensor representation provides a more sophisticated modeling technique and a higher-order generalization to linear subspace analysis. In graph theory, data points can be generalized as nodes with connectivities measured from the proximity of a local neighborhood. The graph-based framework efficiently characterizes the relationships among the data and allows for convenient mathematical manipulation in many applications, such as data clustering, feature extraction, feature selection and data alignment. In this thesis, graph-based approaches applied in the field of multi-source feature and data fusion in remote sensing area are explored. We will mainly investigate the fusion of spatial, spectral and LiDAR information with linear and multilinear algebra under graph-based framework for data clustering and classification problems

    Deeply learned attribute profiles for hyperspectral pixel classification

    Get PDF
    Hyperspectral Imaging has a large potential for knowledge representation about the real world. Providing a pixel classi cation algorithm to generate maps with labels has become important in numerous elds since its inception, found use from military surveillance and natural resource observation to crop turnout estimation. In this thesis, within the branch of mathematical morphology, Attribute Pro les (AP) and their extension into the Hyperspectral domain have been used to extract descriptive vectors from each pixel on two hyperspectral datasets. These newly generated feature vectors are then supplied to Convolutional Neural Networks (CNNs), from o -the-shelf AlexNet and GoogLeNet to our proposed networks that would take into account local connectivity of regions, to extract further, higher level abstract features. Bearing in mind that the last layers of CNNs are supplied with softmax classi ers, and using Random Forest (RF) classi ers as a control group for both raw and deeply learned features, experiments are made. The results showed that not only there are signi cant improvements in numerical results on the Pavia University dataset, but also the classi cation maps become more robust and more intuitive as di erent, insightful and compatible attribute pro les are used along with spectral signatures with a CNN that is designed for this purpose
    corecore