1,453 research outputs found

    Incremental complexity of a bi-objective hypergraph transversal problem

    Get PDF
    The hypergraph transversal problem has been intensively studied, from both a theoretical and a practical point of view. In particular , its incremental complexity is known to be quasi-polynomial in general and polynomial for bounded hypergraphs. Recent applications in computational biology however require to solve a generalization of this problem, that we call bi-objective transversal problem. The instance is in this case composed of a pair of hypergraphs (A, B), and the aim is to find minimal sets which hit all the hyperedges of A while intersecting a minimal set of hyperedges of B. In this paper, we formalize this problem, link it to a problem on monotone boolean ∧\land -- √\lor formulae of depth 3 and study its incremental complexity

    Pure Nash Equilibria: Hard and Easy Games

    Full text link
    We investigate complexity issues related to pure Nash equilibria of strategic games. We show that, even in very restrictive settings, determining whether a game has a pure Nash Equilibrium is NP-hard, while deciding whether a game has a strong Nash equilibrium is SigmaP2-complete. We then study practically relevant restrictions that lower the complexity. In particular, we are interested in quantitative and qualitative restrictions of the way each players payoff depends on moves of other players. We say that a game has small neighborhood if the utility function for each player depends only on (the actions of) a logarithmically small number of other players. The dependency structure of a game G can be expressed by a graph DG(G) or by a hypergraph H(G). By relating Nash equilibrium problems to constraint satisfaction problems (CSPs), we show that if G has small neighborhood and if H(G) has bounded hypertree width (or if DG(G) has bounded treewidth), then finding pure Nash and Pareto equilibria is feasible in polynomial time. If the game is graphical, then these problems are LOGCFL-complete and thus in the class NC2 of highly parallelizable problems

    On the Succinctness of Query Rewriting over OWL 2 QL Ontologies with Shallow Chases

    Full text link
    We investigate the size of first-order rewritings of conjunctive queries over OWL 2 QL ontologies of depth 1 and 2 by means of hypergraph programs computing Boolean functions. Both positive and negative results are obtained. Conjunctive queries over ontologies of depth 1 have polynomial-size nonrecursive datalog rewritings; tree-shaped queries have polynomial positive existential rewritings; however, in the worst case, positive existential rewritings can only be of superpolynomial size. Positive existential and nonrecursive datalog rewritings of queries over ontologies of depth 2 suffer an exponential blowup in the worst case, while first-order rewritings are superpolynomial unless NP⊆P/poly\text{NP} \subseteq \text{P}/\text{poly}. We also analyse rewritings of tree-shaped queries over arbitrary ontologies and observe that the query entailment problem for such queries is fixed-parameter tractable

    Tree-like Queries in OWL 2 QL: Succinctness and Complexity Results

    Get PDF
    This paper investigates the impact of query topology on the difficulty of answering conjunctive queries in the presence of OWL 2 QL ontologies. Our first contribution is to clarify the worst-case size of positive existential (PE), non-recursive Datalog (NDL), and first-order (FO) rewritings for various classes of tree-like conjunctive queries, ranging from linear queries to bounded treewidth queries. Perhaps our most surprising result is a superpolynomial lower bound on the size of PE-rewritings that holds already for linear queries and ontologies of depth 2. More positively, we show that polynomial-size NDL-rewritings always exist for tree-shaped queries with a bounded number of leaves (and arbitrary ontologies), and for bounded treewidth queries paired with bounded depth ontologies. For FO-rewritings, we equate the existence of polysize rewritings with well-known problems in Boolean circuit complexity. As our second contribution, we analyze the computational complexity of query answering and establish tractability results (either NL- or LOGCFL-completeness) for a range of query-ontology pairs. Combining our new results with those from the literature yields a complete picture of the succinctness and complexity landscapes for the considered classes of queries and ontologies.Comment: This is an extended version of a paper accepted at LICS'15. It contains both succinctness and complexity results and adopts FOL notation. The appendix contains proofs that had to be omitted from the conference version for lack of space. The previous arxiv version (a long version of our DL'14 workshop paper) only contained the succinctness results and used description logic notatio
    • 

    corecore