44 research outputs found

    Hyperbolicity cones of elementary symmetric polynomials are spectrahedral

    Full text link
    We prove that the hyperbolicity cones of elementary symmetric polynomials are spectrahedral, i.e., they are slices of the cone of positive semidefinite matrices. The proof uses the matrix--tree theorem, an idea already present in Choe et al.Comment: 9 pages. Some typos corrected. Details added. To appear in Optimization Letter

    Exponential lower bounds on spectrahedral representations of hyperbolicity cones

    Full text link
    The Generalized Lax Conjecture asks whether every hyperbolicity cone is a section of a semidefinite cone of sufficiently high dimension. We prove that the space of hyperbolicity cones of hyperbolic polynomials of degree dd in nn variables contains (n/d)Ω(d)(n/d)^{\Omega(d)} pairwise distant cones in a certain metric, and therefore that any semidefinite representation of such cones must have dimension at least (n/d)Ω(d)(n/d)^{\Omega(d)} (even if a small approximation is allowed). The proof contains several ingredients of independent interest, including the identification of a large subspace in which the elementary symmetric polynomials lie in the relative interior of the set of hyperbolic polynomials, and quantitative versions of several basic facts about real rooted polynomials.Comment: Fixed a mistake in the proof of Lemma 6. The statement is unchanged except for constant factors, and the main theorem is unaffected. Wrote a slightly stronger statement for the main theorem, emphasizing approximate representations (the proof is the same). Added one figur

    A Note on the Hyperbolicity Cone of the Specialized V\'amos Polynomial

    Full text link
    The specialized V\'amos polynomial is a hyperbolic polynomial of degree four in four variables with the property that none of its powers admits a definite determinantal representation. We will use a heuristical method to prove that its hyperbolicity cone is a spectrahedron.Comment: Notable easier arguments and minor correction

    Hyperbolic Polynomials and Generalized Clifford Algebras

    Full text link
    We consider the problem of realizing hyperbolicity cones as spectrahedra, i.e. as linear slices of cones of positive semidefinite matrices. The generalized Lax conjecture states that this is always possible. We use generalized Clifford algebras for a new approach to the problem. Our main result is that if -1 is not a sum of hermitian squares in the Clifford algebra of a hyperbolic polynomial, then its hyperbolicity cone is spectrahedral. Our result also has computational applications, since this sufficient condition can be checked with a single semidefinite program

    Polynomial-sized Semidefinite Representations of Derivative Relaxations of Spectrahedral Cones

    Full text link
    We give explicit polynomial-sized (in nn and kk) semidefinite representations of the hyperbolicity cones associated with the elementary symmetric polynomials of degree kk in nn variables. These convex cones form a family of non-polyhedral outer approximations of the non-negative orthant that preserve low-dimensional faces while successively discarding high-dimensional faces. More generally we construct explicit semidefinite representations (polynomial-sized in k,mk,m, and nn) of the hyperbolicity cones associated with kkth directional derivatives of polynomials of the form p(x)=det(i=1nAixi)p(x) = \det(\sum_{i=1}^{n}A_i x_i) where the AiA_i are m×mm\times m symmetric matrices. These convex cones form an analogous family of outer approximations to any spectrahedral cone. Our representations allow us to use semidefinite programming to solve the linear cone programs associated with these convex cones as well as their (less well understood) dual cones.Comment: 20 pages, 1 figure. Minor changes, expanded proof of Lemma

    Smooth Hyperbolicity Cones are Spectrahedral Shadows

    Full text link
    Hyperbolicity cones are convex algebraic cones arising from hyperbolic polynomials. A well-understood subclass of hyperbolicity cones is that of spectrahedral cones and it is conjectured that every hyperbolicity cone is spectrahedral. In this paper we prove a weaker version of this conjecture by showing that every smooth hyperbolicity cone is the linear projection of a spectrahedral cone, that is, a spectrahedral shadow
    corecore