slides

Polynomial-sized Semidefinite Representations of Derivative Relaxations of Spectrahedral Cones

Abstract

We give explicit polynomial-sized (in nn and kk) semidefinite representations of the hyperbolicity cones associated with the elementary symmetric polynomials of degree kk in nn variables. These convex cones form a family of non-polyhedral outer approximations of the non-negative orthant that preserve low-dimensional faces while successively discarding high-dimensional faces. More generally we construct explicit semidefinite representations (polynomial-sized in k,mk,m, and nn) of the hyperbolicity cones associated with kkth directional derivatives of polynomials of the form p(x)=det(i=1nAixi)p(x) = \det(\sum_{i=1}^{n}A_i x_i) where the AiA_i are m×mm\times m symmetric matrices. These convex cones form an analogous family of outer approximations to any spectrahedral cone. Our representations allow us to use semidefinite programming to solve the linear cone programs associated with these convex cones as well as their (less well understood) dual cones.Comment: 20 pages, 1 figure. Minor changes, expanded proof of Lemma

    Similar works

    Full text

    thumbnail-image