7,981 research outputs found

    Numerical simulation of the flowfield over ice accretion shapes

    Get PDF
    The primary goals are directed toward the development of a numerical method for computing flow about ice accretion shapes and determining the influence of these shapes on flow degradation. It is expedient to investigate various aspects of icing independently in order to assess their contribution to the overall icing phenomena. The specific aspects to be examined include the water droplet trajectories with collection efficiencies and phase change on the surface, the flowfield about specified shapes including lift, drag, and heat transfer distribution, and surface roughness effects. The configurations computed were models of ice accretion shapes formed on a circular cylinder in the NASA Lewis Icing Research Tunnel. An existing Navier-Stokes program was modified to compute the flowfield over four shapes (2, 5, and 15 minute models of glaze ice, and a 15 minute accumulation of rime ice)

    Calculation of supersonic viscous flow over delta wings with sharp subsonic leading edges

    Get PDF
    Two complementary procedures were developed to calculate the viscous supersonic flow over conical shapes at large angles of attack, with application to cones and delta wings. In the first approach the flow is assumed to be conical and the governing equations are solved at a given Reynolds number with a time-marching explicit finite-difference algorithm. In the second method the parabolized Navier-Stokes equations are solved with a space-marching implicit noniterative finite-difference algorithm. This latter approach is not restricted to conical shapes and provides a large improvement in computational efficiency over published methods. Results from the two procedures agree very well with each other and with available experimental data

    Regular map smoothing

    Get PDF
    A regular map is a family of equivalent polygons, glued together to form a closed surface without boundaries which is vertex, edge and face transitive. The commonly known regular maps are derived from the Platonic solids and some tessellations of the torus. There are also regular maps of genus greater than 1 which are traditionally viewed as finitely generated groups. RMS (Regular Map Smoothing) is a tool for visualizing a geometrical realization of such a group either as a cut-out in the hyperbolic space or as a compact surface in 3−space. It provides also a tool to make the resulting regular map more appealing than before. RMS achieves that by the use of a coloring scheme based on coset enumeration, a Catmull-Clark smoothing scheme and a force-directed algorithm with topology preservation

    Area and Length Minimizing Flows for Shape Segmentation

    Get PDF
    ©1997 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or distribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.Presented at the 1997 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, June 17-19, 1997, San Juan, Puerto Rico.DOI: 10.1109/CVPR.1997.609390Several active contour models have been proposed to unify the curve evolution framework with classical energy minimization techniques for segmentation, such as snakes. The essential idea is to evolve a curve (in 20) or a surface (in 30) under constraints from image forces so that it clings to features of interest in an intensity image. Recently the evolution equation has. been derived from first principles as the gradient flow that minimizes a modified length functional, tailored io features such as edges. However, because the flow may be slow to converge in practice, a constant (hyperbolic) term is added to keep the curve/surface moving in the desired direction. In this paper, we provide a justification for this term based on the gradient flow derived from a weighted area functional, with image dependent weighting factor. When combined with the earlier modified length gradient flow we obtain a pde which offers a number of advantages, as illustrated by several examples of shape segmentation on medical images. In many cases the weighted area flow may be used on its own, with significant computational savings

    Visualization of regular maps : the chase continues

    Get PDF
    A regular map is a symmetric tiling of a closed surface, in the sense that all faces, vertices, and edges are topologically indistinguishable. Platonic solids are prime examples, but also for surfaces with higher genus such regular maps exist. We present a new method to visualize regular maps. Space models are produced by matching regular maps with target shapes in the hyperbolic plane. The approach is an extension of our earlier work. Here a wider variety of target shapes is considered, obtained by duplicating spherical and toroidal regular maps, merging triangles, punching holes, and gluing the edges. The method produces about 45 new examples, including the genus 7 Hurwitz surface

    Quasiconvex Programming

    Full text link
    We define quasiconvex programming, a form of generalized linear programming in which one seeks the point minimizing the pointwise maximum of a collection of quasiconvex functions. We survey algorithms for solving quasiconvex programs either numerically or via generalizations of the dual simplex method from linear programming, and describe varied applications of this geometric optimization technique in meshing, scientific computation, information visualization, automated algorithm analysis, and robust statistics.Comment: 33 pages, 14 figure

    Electromagnetically-induced transparency and light storing of a pair of pulses

    Full text link
    Electromagnetically-induced transparency and light storing are studied in the case of a medium of atoms in a double Lambda configuration, both in terms of dark- and bright-state polatitons and atomic susceptibility. It is proven that the medium can be made transparent simultaneously for two pulses following their self-adjusting so that a condition for an adiabatic evolution has become fulfilled. Analytic formulas are given for the shapes and phases of the transmitted/stored pulses. The level of transparency can be regulated by adjusting the heights and phases of the control fields.Comment: text +6 figure
    corecore