173 research outputs found

    Height in splittings of hyperbolic groups

    Get PDF
    Suppose HH is a hyperbolic subgroup of a hyperbolic group GG. Assume there exists n>0n > 0 such that the intersection of nn essentially distinct conjugates of HH is always finite. Further assume GG splits over HH with hyperbolic vertex and edge groups and the two inclusions of HH are quasi-isometric embeddings. Then HH is quasiconvex in GG. This answers a question of Swarup and provides a partial converse to the main theorem of \cite{GMRS}.Comment: 16 pages, no figures, no table

    Topologically Trivial Closed Walks in Directed Surface Graphs

    Get PDF
    Let G be a directed graph with n vertices and m edges, embedded on a surface S, possibly with boundary, with first Betti number beta. We consider the complexity of finding closed directed walks in G that are either contractible (trivial in homotopy) or bounding (trivial in integer homology) in S. Specifically, we describe algorithms to determine whether G contains a simple contractible cycle in O(n+m) time, or a contractible closed walk in O(n+m) time, or a bounding closed walk in O(beta (n+m)) time. Our algorithms rely on subtle relationships between strong connectivity in G and in the dual graph G^*; our contractible-closed-walk algorithm also relies on a seminal topological result of Hass and Scott. We also prove that detecting simple bounding cycles is NP-hard. We also describe three polynomial-time algorithms to compute shortest contractible closed walks, depending on whether the fundamental group of the surface is free, abelian, or hyperbolic. A key step in our algorithm for hyperbolic surfaces is the construction of a context-free grammar with O(g^2L^2) non-terminals that generates all contractible closed walks of length at most L, and only contractible closed walks, in a system of quads of genus g >= 2. Finally, we show that computing shortest simple contractible cycles, shortest simple bounding cycles, and shortest bounding closed walks are all NP-hard

    Pseudo-Riemannian Graph Convolutional Networks

    Full text link
    Graph convolutional networks (GCNs) are powerful frameworks for learning embeddings of graph-structured data. GCNs are traditionally studied through the lens of Euclidean geometry. Recent works find that non-Euclidean Riemannian manifolds provide specific inductive biases for embedding hierarchical or spherical data. However, they cannot align well with data of mixed graph topologies. We consider a larger class of pseudo-Riemannian manifolds that generalize hyperboloid and sphere. We develop new geodesic tools that allow for extending neural network operations into geodesically disconnected pseudo-Riemannian manifolds. As a consequence, we derive a pseudo-Riemannian GCN that models data in pseudo-Riemannian manifolds of constant nonzero curvature in the context of graph neural networks. Our method provides a geometric inductive bias that is sufficiently flexible to model mixed heterogeneous topologies like hierarchical graphs with cycles. We demonstrate the representational capabilities of this method by applying it to the tasks of graph reconstruction, node classification and link prediction on a series of standard graphs with mixed topologies. Empirical results demonstrate that our method outperforms Riemannian counterparts when embedding graphs of complex topologies.Comment: 20 page
    • …
    corecore