1,607 research outputs found
Physical controls of nitrogen supply in early successional riparian ecosystems along the Tanana River, Alaska
Thesis (M.S.) University of Alaska Fairbanks, 2005Accumulation of nitrogen in the early successional vegetation on the Tanana River floodplain cannot be explained by conventional measurements of soil nitrogen dynamics. This study examined these riparian areas and the effect on nitrogen cycling created by interactions among the aquatic, terrestrial, and atmospheric environments. Two hypotheses were tested; one centered on hydrologic, and one on atmospheric, mechanisms of nitrogen supply. We experimentally tested contributions of nitrogen from the hyporheic zone by measuring nitrogen-flux in the presence and absence of moving water. We then characterized hydrologic properties and ground-water chemistry along three ground-water well transects. In addition, we conducted a study to determine ambient levels of ammonia gas in the local atmosphere and to identify plants potentially utilizing atmospheric nitrogen based on stable isotope natural abundances. Static acid traps were used to calculate atmospheric levels of ammonia and mean levels ranged as high as 14 μg m⁻³, and there was isotopic evidence that the Salix alaxensis communities are utilizing atmospheric ammonia. Both hydrologic and atmospheric sources of nitrogen potentially provide greater amounts of nitrogen when compared to the in-situ processes of nitrogen fixation, nitrogen mineralization, and nitrogen deposition during this critical transition from bare silt to productive floodplain forests.Introduction -- Hydrologic controls on nitrogen availability in a high-latitude, semi-arid floodplain -- Soil-atmospheric-plant interactions alter nitrogen availability during primary succession in floodplain ecosystems -- General conclusions
On the multiple ecological roles of water in river networks
The distribution and movement of water can influence the state and dynamics of terrestrial and aquatic ecosystems through a diversity of mechanisms. These mechanisms can be organized into three general categories wherein water acts as (1) a resource or habitat for biota, (2) a vector for connectivity and exchange of energy, materials, and organisms, and (3) as an agent of geomorphic change and disturbance. These latter two roles are highlighted in current models, which emphasize hydrologic connectivity and geomorphic change as determinants of the spatial and temporal distributions of species and processes in river systems. Water availability, on the other hand, has received less attention as a driver of ecological pattern, despite the prevalence of intermittent streams, and strong potential for environmental change to alter the spatial extent of drying in many regions. Here we summarize long-term research from a Sonoran Desert watershed to illustrate how spatial patterns of ecosystem structure and functioning reflect shifts in the relative importance of different 'roles of water' across scales of drainage size. These roles are distributed and interact hierarchically in the landscape, and for the bulk of the drainage network it is the duration of water availability that represents the primary determinant of ecological processes. Only for the largest catchments, with the most permanent flow regimes, do flood-associated disturbances and hydrologic exchange emerge as important drivers of local dynamics. While desert basins represent an extreme case, the diversity of mechanisms by which the availability and flow of water influence ecosystem structure and functioning are general. Predicting how river ecosystems may respond to future environmental pressures will require clear understanding of how changes in the spatial extent and relative overlap of these different roles of water shape ecological patterns. © 2013 Sponseller et al
The ecology of methane in streams and rivers: patterns, controls, and global significance
Streams and rivers can substantially modify organic carbon (OC) inputs from terrestrial landscapes, and much of this processing is the result of microbial respiration. While carbon dioxide (CO₂) is the major end‐product of ecosystem respiration, methane (CH₄) is also present in many fluvial environments even though methanogenesis typically requires anoxic conditions that may be scarce in these systems. Given recent recognition of the pervasiveness of this greenhouse gas in streams and rivers, we synthesized existing research and data to identify patterns and drivers of CH₄, knowledge gaps, and research opportunities. This included examining the history of lotic CH4 research, creating a database of concentrations and fluxes (MethDB) to generate a global‐scale estimate of fluvial CH₄ efflux, and developing a conceptual framework and using this framework to consider how human activities may modify fluvial CH₄ dynamics. Current understanding of CH₄ in streams and rivers has been strongly influenced by goals of understanding OC processing and quantifying the contribution of CH₄ to ecosystem C fluxes. Less effort has been directed towards investigating processes that dictate in situ CH₄ production and loss. CH₄ makes a meager contribution to watershed or landscape C budgets, but streams and rivers are often significant CH₄ sources to the atmosphere across these same spatial extents. Most fluvial systems are supersaturated with CH₄ and we estimate an annual global emission of 26.8 Tg CH₄, equivalent to ~15‐40% of wetland and lake effluxes, respectively. Less clear is the role of CH₄ oxidation, methanogenesis, and total anaerobic respiration to whole ecosystem production and respiration. Controls on CH₄ generation and persistence can be viewed in terms of proximate controls that influence methanogenesis (organic matter, temperature, alternative electron acceptors, nutrients) and distal geomorphic and hydrologic drivers. Multiple controls combined with its extreme redox status and low solubility result in high spatial and temporal variance of CH₄ in fluvial environments, which presents a substantial challenge for understanding its larger‐scale dynamics. Further understanding of CH₄ production and consumption, anaerobic metabolism, and ecosystem energetics in streams and rivers can be achieved through more directed studies and comparison with knowledge from terrestrial, wetland, and aquatic disciplines."Support for this paper was provided by funding from the North Temperate Lakes LTER program, NSF DEB‐0822700."https://esajournals.onlinelibrary.wiley.com/doi/full/10.1890/15-102
The ecology of methane in streams and rivers: patterns, controls, and global significance
Streams and rivers can substantially modify organic carbon (OC) inputs from terrestrial landscapes, and much of this processing is the result of microbial respiration. While carbon dioxide (CO₂) is the major end‐product of ecosystem respiration, methane (CH₄) is also present in many fluvial environments even though methanogenesis typically requires anoxic conditions that may be scarce in these systems. Given recent recognition of the pervasiveness of this greenhouse gas in streams and rivers, we synthesized existing research and data to identify patterns and drivers of CH₄, knowledge gaps, and research opportunities. This included examining the history of lotic CH4 research, creating a database of concentrations and fluxes (MethDB) to generate a global‐scale estimate of fluvial CH₄ efflux, and developing a conceptual framework and using this framework to consider how human activities may modify fluvial CH₄ dynamics. Current understanding of CH₄ in streams and rivers has been strongly influenced by goals of understanding OC processing and quantifying the contribution of CH₄ to ecosystem C fluxes. Less effort has been directed towards investigating processes that dictate in situ CH₄ production and loss. CH₄ makes a meager contribution to watershed or landscape C budgets, but streams and rivers are often significant CH₄ sources to the atmosphere across these same spatial extents. Most fluvial systems are supersaturated with CH₄ and we estimate an annual global emission of 26.8 Tg CH₄, equivalent to ~15‐40% of wetland and lake effluxes, respectively. Less clear is the role of CH₄ oxidation, methanogenesis, and total anaerobic respiration to whole ecosystem production and respiration. Controls on CH₄ generation and persistence can be viewed in terms of proximate controls that influence methanogenesis (organic matter, temperature, alternative electron acceptors, nutrients) and distal geomorphic and hydrologic drivers. Multiple controls combined with its extreme redox status and low solubility result in high spatial and temporal variance of CH₄ in fluvial environments, which presents a substantial challenge for understanding its larger‐scale dynamics. Further understanding of CH₄ production and consumption, anaerobic metabolism, and ecosystem energetics in streams and rivers can be achieved through more directed studies and comparison with knowledge from terrestrial, wetland, and aquatic disciplines."Support for this paper was provided by funding from the North Temperate Lakes LTER program, NSF DEB‐0822700."https://esajournals.onlinelibrary.wiley.com/doi/full/10.1890/15-102
Importance of long-term cycles for predicting water level dynamics in natural lakes
Lakes are disproportionately important ecosystems for humanity, containing 77% of the liquid surface freshwater on Earth and comprising key contributors to global biodiversity. With an ever-growing human demand for water and increasing climate uncertainty, there is pressing need for improved understanding of the underlying patterns of natural variability of water resources and consideration of their implications for water resource management and conservation. Here we use Bayesian harmonic regression models to characterise water level dynamics and study the influence of cyclic components in confounding estimation of long-term directional trends in water levels in natural Irish lakes. We found that the lakes were characterised by a common and well-defined annual seasonality and several inter-annual and inter-decadal cycles with strong transient behaviour over time. Importantly, failing to account for the longer-term cyclic components produced a significant overall underestimation of the trend effect. Our findings demonstrate the importance of contextualising lake water resource management to the specific physical setting of lakes
Improving productivity in tropical lakes and reservoirs
Freshwater aquaculture, Inland fisheries
Riparian Corridors: A New Conceptual Framework for Assessing Nitrogen Buffering Across Biomes
Anthropogenic activities have more than doubled the amount of reactive nitrogen circulating on Earth, creating excess nutrients across the terrestrial-aquatic gradient. These excess nutrients have caused worldwide eutrophication, fundamentally altering the functioning of freshwater and marine ecosystems. Riparian zones have been recognized to buffer diffuse nitrate pollution, reducing delivery to aquatic ecosystems, but nutrient removal is not their only function in river systems. In this paper, we propose a new conceptual framework to test the capacity of riparian corridors to retain, remove, and transfer nitrogen along the continuum from land to sea under different climatic conditions. Because longitudinal, lateral, and vertical connectivity in riparian corridors influences their functional role in landscapes, we highlight differences in these parameters across biomes. More specifically, we explore how the structure of riparian corridors shapes stream morphology (the river's spine), their multiple functions at the interface between the stream and its catchment (the skin), and their biogeochemical capacity to retain and remove nitrogen (the kidneys). We use the nitrogen cycle as an example because nitrogen pollution is one of the most pressing global environmental issues, influencing directly and indirectly virtually all ecosystems on Earth. As an initial test of the applicability of our interbiome approach, we present synthesis results of gross ammonification and net nitrification from diverse ecosystems
Riparian corridors: A new conceptual framework for assessingt nitrogen buffering across biomes
Anthropogenic activities have more than doubled the amount of reactive nitrogen circulating on Earth, creating excess nutrients across the terrestrial-aquatic gradient. These excess nutrients have caused worldwide eutrophication, fundamentally altering the functioning of freshwater and marine ecosystems. Riparian zones have been recognized to buffer diffuse nitrate pollution, reducing delivery to aquatic ecosystems, but nutrient removal is not their only function in river systems. In this paper, we propose a new conceptual framework to test the capacity of riparian corridors to retain, remove, and transfer nitrogen along the continuum from land to sea under different climatic conditions. Because longitudinal, lateral, and vertical connectivity in riparian corridors influences their functional role in landscapes, we highlight differences in these parameters across biomes. More specifically, we explore how the structure of riparian corridors shapes stream morphology (the river's spine), their multiple functions at the interface between the stream and its catchment (the skin), and their biogeochemical capacity to retain and remove nitrogen (the kidneys). We use the nitrogen cycle as an example because nitrogen pollution is one of the most pressing global environmental issues, influencing directly and indirectly virtually all ecosystems on Earth. As an initial test of the applicability of our interbiome approach, we present synthesis results of gross ammonification and net nitrification from diverse ecosystems
- …
