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Abstract

Lakes are disproportionately important ecosystems for humanity, containing 77% of the lig-
uid surface freshwater on Earth and comprising key contributors to global biodiversity. With
an ever-growing human demand for water and increasing climate uncertainty, there is
pressing need for improved understanding of the underlying patterns of natural variability of
water resources and consideration of their implications for water resource management and
conservation. Here we use Bayesian harmonic regression models to characterise water
level dynamics and study the influence of cyclic components in confounding estimation of
long-term directional trends in water levels in natural Irish lakes. We found that the lakes
were characterised by a common and well-defined annual seasonality and several inter-an-
nual and inter-decadal cycles with strong transient behaviour over time. Importantly, failing
to account for the longer-term cyclic components produced a significant overall underesti-
mation of the trend effect. Our findings demonstrate the importance of contextualising lake
water resource management to the specific physical setting of lakes.

Introduction

The global anthropogenisation of Earth’s biomes and the appropriation of its natural re-
sources under increasing climate uncertainty are complex and novel environmental and so-
cioeconomic challenges for society [1-4]. Water is recognised widely as the most essential of
natural resources because of its importance to every facet of human life, limited supply and
unequal distribution [5]. Sustainable use of global water resources is being hindered by the
current intensification of the Earth’s water cycle with atmospheric warming [6]. Providing for
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that no compefing intarests exist sive technological intervention with its own profound environmental implications [7, 8]. An
estimated 80% of the global human population inhabit areas with threatened water security
[8]. Consequently, sustainable water use requires increasingly adaptive and integrated man-
agement strategies capable of acting rapidly by incorporating current resource uncertainty
[9], while allocating existing resources under competing uses by integrating environmental,
human and technological factors [10].

Lakes contain 77% of the liquid surface fresh water on Earth [11], provide multiple essen-
tial ecosystem services [12] and support extremely high [13], yet fragile [14], levels of biodi-
versity. Water level dynamics comprise one of the most important physical processes in
lakes with significant socio-economic and environmental implications. Extreme high water
episodes or significant upward trends in water levels can culminate in shoreline damage
[15], while prolonged decreasing water levels may generate water quality issues [16] and im-
pact the delivery of lake ecosystem services [17]. Water level fluctuations regulate the dy-
namics of biological communities [18], the water and nutrient balances of lakes, the
interaction between littoral and pelagic zones and the flux of organic material [19]. Extreme-
ly high or low water levels can alter whole ecosystems dramatically, by, for example, altering
patterns of sediment deposition and inducing shifts in their trophic state [20]. Further, the
functioning of lake ecosystems is driven by fluctuations in water levels that occur at a variety
of temporal scales, driven by weather patterns, climatic processes and human disturbance
[21, 22]. For example, surrounding ecosystems forming the aquatic-terrestrial interface rely
strongly on the seasonal and periodic fluctuations in water levels [23]. Maintenance and res-
toration of natural water level regimes is, therefore, crucial to enhance water quality and bio-
diversity and to preserve the multiple ecosystem goods and services provided by lakes [24].

Active management of water levels is advocated as a socio-economic and environmentally-
balanced solution to lake water resource management [25]. However, uncertainty and tempo-
ral variability in water resource availability across a range of temporal scales [26] makes
rational planning and management based on water level regimes highly complex. Natural
water level fluctuations in lakes encompass both seasonal and cyclical components superim-
posed on long-term trends and stochastic noise. These are subject to frequent temporal shifts
and changes linked to the nonlinear, stochastic or transient effects of external factors such as
global climate forcing [27], anthropogenic activities [28] and their interaction [22]. Such varia-
tion in the temporal patterning of environmental variation can be a key determinant of biotic
community dynamics and susceptibility to disturbance [29, 30]. Whereas seasonal and cyclic
components are obviously important to resource management, a coherent management strate-
gy needs to be based ultimately on long-term resource availability. This requires application of
flexible analytical tools that allow explicit incorporation of seasonal and possibly other more
long-term cyclic components across a range of temporal scales. Moreover, the analysis of
long-term datasets also generally involves making important decisions about how to deal with
missing data. Commonly, this involves choosing between alternative imputation procedures
which can have significant influence on the models that are ultimately produced. Bayesian in-
ference offers a flexible framework that can help to avoid these important problems, including
the possibility of using incomplete series without having to recur to imputation procedures
and the possibility of fitting models without prior knowledge of the periodicity associated with
harmonics. For these reasons, we used Bayesian harmonic regression models to (i) explore the
importance of cyclic components in confounding estimation of long-term (22-37 years) direc-
tional trends in water levels in 28 natural lakes in Ireland and (ii) analyse the magnitude of
trends in changing water levels.
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Materials and Methods
Water level series

We quantified long-term monthly water level series (ranging from 1974-2012) for 28 natural
lakes in Ireland (Table 1) from relative mean daily water levels recorded at gauge stations on
each lake. We set one complete week of daily data as the minimum required for the computa-
tion of the mean water level in a month. Otherwise, a month was considered as a missing ob-
servation in the final series. We based this criterion on the highly significant (o < 0.001) water
level autocorrelations found in all series as determined by the Durbin-Watson test [31] under
the null hypothesis of no temporal autocorrelation in the series at a 30-day lag. The resulting
proportion of missing observations accounted for 2.7 + 2.9% of the time series (comprising
[mean + SD] 31 + 5 continuous years for each lake).

Bayesian harmonic regression

We used Bayesian harmonic regression (HREG) models with a linear component to identify
the long-term trends in water levels in each lake. Harmonic regression was used to capture the
seasonal and periodic cycles in water level series and provide robust estimates of trends. Miss-
ing values were incorporated into the models as unknowns and estimated from the posterior
distribution following Bayes’ Theorem [32]. This is a clear advantage over frequentist ap-
proaches where missing observations need to be imputed a priori.

We set the sample distribution of water levels as drawn from a gamma distribution related
to the linear predictor Y, using a log-link function

2mt

K
2nt
Y, =B, + Bt + Z(akcos— + pksin—) +PY, , +e
k=1 Py P

where S, is the intercept, §; the temporal trend, and B4 the autoregressive (AR) coefficient.
The AR component was introduced to account for strong monthly temporal autocorrelation in
the series. The K harmonics in the model were expressed as a combination of sine and cosine
waves with amplitude defined by the coefficients o and py, and period P, denoting the time re-
quired to complete one cycle of a harmonic. Normal distributions with mean zero and variance
10°° were assigned to the regression coefficients and intercept, while the autoregressive coeffi-
cient was defined by a uniform distribution between-1 and 1 (boundary conditions are required
for a stationary process).

Because the seasonal pattern of water level fluctuations at the annual periodicity is strong
and well-known in temperate lakes, taking place in winter (high water) and summer (low
water) in our study lakes, our first model alternative comprised a single harmonic (K = 1) cho-
sen to contain just the annual seasonality with a prior drawn from a uniform distribution be-
tween 6 and 18 months: P; ~ U (6, 18). A second alternative (K = 2) was given by adding a
second harmonic to the seasonal model, accounting for non-seasonal long-term cycles, was de-
scribed by P, ~ U (24, N), where N indicates the total length of the series. Inter-annual as well
as multi-decadal water level cycles are common in natural lakes, usually associated with natural
climatic inter-decadal oscillations [27, 33]. We therefore considered a third model alternative
with three harmonics (K = 3) including an annual, an inter-annual P, ~ U (24, 132) and an
open-prior inter-decadal harmonic P; ~ U (144, N). A fourth set of model alternatives com-
prised a null model that consisted of only the trend component (K = 0). Model selection was
made on the basis of convergence and the lowest deviance information criterion (DIC [34]).
Given our a priori interest in exploring the nature and relative importance of long-term cycles
in lake water level dynamics, we selected models with the higher number of harmonics where
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Table 1. List of studied lakes and associated water level series characteristics, with information on their surface area, mean depth (where
known) and current (2008-2009) annual abstraction volumes.

Lake Latitude / Longitude County Start / End % Missing Abstracted volume Surface area  Mean Depth
(decimal degrees) values (hm®yr) (ha) (m)
Akibbon (Ak) 55.013N-7.892W Donegal 11-1975/ 5- 0 0 44.5
1997
Anure (An) 55.007N-8.276W Donegal 11-1975/1- 0.2 1.67 132.6 4.5
2012
Bawn (Ba) 54.047N-6.91W Monaghan 10-1976/2- 1.9 0.95 30.4
2012
Cullin (Cu) 53.966N-9.141W Mayo 9-1983/1- 4.3 0 1019.3 5
2009
Cutra (Ct) 53.028 N-8.772 W Galway 9-1976/ 3- 4.9 0 382 4
2012
Derryclare (De) 53.464N-9.803W Galway 4-1979/ 3- 1.3 0 222.5 6.9
2012
Derrygooney 54.042 N-6.942 W Monaghan 10-1976/12- 2.8 0 23.2
(On) 2009
Dromore (Dr) 54.082N-7.087W Monaghan 11-1975/2- 6.9 0 60.5 2.9
2012
Egish (Eg) 54.058N-6.774W Monaghan 3-1975/ 3- 24 0 111.4 3.3
2009
Emy (Em) 54.347N-6.937W Monaghan 10-1981/1- 3 0.3 52.4
2012
Eske (Es) 54.687N-8.052W Donegal 9-1977/ 3- 0 1.09 385.2 7.3
2012
Fad (Fa) 55.234N-7.376 W Donegal 9-1978/ 3- 11.4 1.4* 40.2 5.8
2012
Feeagh (Fe) 53.925N-9.572W Mayo 3-1976/02- 25 0 393.1 14.5
2012
Fern (Fr) 55.054N-7.727W Donegal 9-1976/ 7- 0.4 0 180.3 1
1999
Gartan (Ga) 55.003N-7.906W Donegal 11-1975/7- 0 0.1 202.8 4
1999
Garty (Gr) 53.925N-7.583W Cavan 10-1977/9- 1.8 1.02 82.2 6.7
2000
Gill (Gi) 54.249N-8.439W Sligo 3-1975/2- 0.5 4.9 1375.3 5]
2012
Gleincmurrin 53.308N-9.498W Galway 7-1976 /11- 21 0 162.3 3.8
(Gl) 2011
Gowna (Go) 53.866N-7.544W Cavan 6-1976 / 2- 3.7 0.09 1146.7 3.7
2012
Inchiquin (In) 52.951N-9.083W Clare 11-1976/12- 2.6 0.17 107.3 10.1
2011
Islandeady (Is)  53.838N-9.372W Mayo 10-1976/5- 0.8 0 138.5 3.2
1996
Lickeen (Li) 52.963N-9.245W Clare 1-1976 / 8- 1.5 1.68 83.9 3.9
2003
Muckno (Mu) 54.1N-6.682W Monaghan 2-1976/1- 4.2 0.13 354.3 5.4
2012
Nadregeel (Na) 53.883N-7.162W Cavan 11-1976/12- 8 1.02 84.3 2.4
2005
Oughter (Ou) 54.038N-7.433W Cavan 10-1977/2- 0.2 0 658.2 2.6
2012
Sillan (Si) 54.007N-6.947W Cavan 11-1974/1- 0.5 0 161.5 4.8
2006
(Continued)
PLOS ONE | DOI:10.1371/journal.pone.0119253 March 10, 2015 4/12



@'PLOS ‘ ONE

Importance of Long-Term Cycles for Lake Water Level Dynamics

Table 1. (Continued)

Lake Latitude / Longitude
(decimal degrees)

Skeagh (Sk) 53.951N-7.007W

White (Wh) 54.114N-6.972W

County Start / End % Missing Abstracted volume Surface area  Mean Depth
values (hm®yr) (ha) (m)
Cavan 6-1975/ 2- 0.9 1.21 61 2.2
2012
Monaghan 4-1976/12- 15 0.26 53.6 1
2009

* 64% from unspecified mixed sources (surface/ground water).

doi:10.1371/journal.pone.0119253.t001

there were two or more competing models (i.e., where ADIC < 4) for any given lake. We also
examined whether the incorporation of inter-annual and / or inter-decadal harmonics in these
models increased model performance for estimation of the trend coefficient, compared with
the competing models from those lakes that accounted for seasonality alone. Model perfor-
mance was tested both in terms of precision (i.e., the trend coefficient itself) and accuracy (i.e.,
absolute magnitude of the 95% credible interval associated with the coefficient).

Convergence of the HREG models was verified using the Heidelberg statistic and visual in-
spection of the trace plots after running two chains for 10°-10° iterations with a thinning of
10 and 10* burn-in values. Visual assessment of model residuals was conducted after model
convergence to ensure compliance of the selected model with statistical assumptions. HREG
models were run using R version 2.14.1 [35] and JAGS [36] software.

Results and Discussion

Our HREG models located consistently a very strong annual seasonal component in all lakes
associated with extremely tight credible intervals (Table 2; S1 Table in Supporting Informa-
tion). This was expected, as the seasonality of these lakes tends to be well-defined with summer
minima and winter maxima. However, we found considerable variation in the structure of the
best HREG model among the lakes. Though the incorporation of the annual seasonal harmonic
consistently improved strongly each of the models, the best model for some lakes (43%) com-
prised only a simple seasonal harmonic while others performed better with models incorporat-
ing two (50%) or even three (7%) harmonics (Table 2 & S1 Table). Long-term periodicities for
those lakes best described by models with two- or three-harmonics frequently displayed multi-
modal posterior distributions (Fig. 1), resulting in mean estimates subject to strong uncertainty
as indicated by their much wider credible intervals (Table 2). This is suggestive of dynamic cy-
clic behaviour. Nonetheless, posterior distributions peaked locally with enough regularity to
suggest the likely existence of cycles associated with specific periodicities, particularly in the
4-10 year range (Fig. 1). On the inter-decadal scale, the posterior distributions of some models
suggested the likely presence of oscillations with periodicities approximating 15-25 years,
though these were defined more broadly than the inter-annual peaks. A clear increase in densi-
ty building up progressively from a periodicity of approximately 25 years, truncated by the
limit imposed by the series length, was also identifiable in some lakes suggesting another dif-
fuse but strong signal activity at very low frequencies (Fig. 1).

Evidence exists of inter-annual cycles associated with water level regimes in natural lakes
linked to changes in regional climate driven primarily by variability in atmospheric teleconnec-
tions (e.g. [37]). In the North Atlantic region, the North Atlantic Oscillation (NAO) represents
the foremost mode of climate variability exerting a strong influence on winter temperatures
and precipitation over most of Europe[38]. Though the NAO exhibits important inter-annual
and inter-decadal variability alternated with periods in which circulation patterns persist for
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Table 2. Summary of the best HREG models, with their respective DIC values and relative DIC differences compared to the null model (i.e., no
harmonics; ADIC) for each of the study lakes, and description of the trend mean coefficient 8,, seasonal P: U (6 months, 18 months) and cyclic

P,: U (24, 132) and P3: U (144, N) components along with their corresponding 95% credible intervals (in parentheses).

Lake

Akibbon (Ak)
Anure (An)
Bawn (Ba)
Cullin (Cu)
Cutra (Ct)
Derryclare (De)
Derrygooney (Dr)
Dromore (Dr)
Egish (Eg)
Emy (Em)
Eske (Es)

Fad (Fa)
Feeagh (Fe)
Fern (Fr)
Gartan (Ga)
Garty (Gr)

Gill (Gi)
Gleincmurrin (Gl)
Gowna (Go)
Inchiquin (In)
Islandeady (Is)
Lickeen (Li)
Muckno (Mu)
Nadregeel (Na)
Oughter (Ou)
Sillan (Si)
Skeagh (Sk)
White (Wh)

DIC (model)

-34.2
-167.4
-71.6
193.8
-55.1
-237.7
-267.4
-156
-383.3
9.8
-537.3
-517.9
-510.2
222
-188.6
-193.2
-14
1257
39.8
-94.4
1.9
1414
95.8
-160.5
507.3
-192.3
-234.4
54.7

ADIC

21.8
19.3
64.6
71.5
57.6
45.3
114.5
113.5
84.8
721
37.3
7.7
67.1
73.6
415
25.3
13.3
62
172.6
111.5
47.8
24.6
52.6
78.8
168.2
125
15
119.1

See S1 Table for details on competing models.

doi:10.1371/journal.pone.0119253.t002

B (x10™%)
0.1(-1.9, 2.2)
-0.1 (-0.7, 0.6)
11 (-2, -0.3)
0.3 (-2.1,1.4)
0.2 (-1.2,07)
-1.4 (-2.4,0.4)
-1.9 (-3.2, -0.6)
0.3 (2.1,1.2)
1.2 (-2, -0.4)
3.1 (0.9, 5)
-0.1 (-1.1, 1)
-0.8 (-1.6,0.1)
-1.6 (2.4, -0.8)
-0.3 (2.6, 2.1)
1.7 (-3.7,0.2)
4(1.4,6.9)
-0.3 (-1, 0.3)
0.1 (-1.4,1.2)
-1.8 (2.9, -0.7)
-0.5(-1.8,0.7)
-4.6 (-8.3,-0.7)
-3.4(-5.3,-1.7)

(_

(_

(-

(_

(_
(_
(_
(_
(_
(_

2.6 (-3.8, -1.1)
-1.1 (-2.5, 0.5)
-15(-3.1,0.1)
-0.3 (-1.4,0.8)
-0.3 (-1, 0.4)
-1(-3.2,0.9)

P,

12.04 (11.92, 12.15)
11.99 (11.95, 12.04)
11.97 (11.94, 12)
12.01 (11.96, 12.05)
12 (11.96, 12.03)
12 (11.95, 12.04)
11.98 (11.95, 12)
11.97 (11.94, 11.99)
11.97 (11.94, 12.01)
11.97 (11.93, 12.01)
12.01 (11.97, 12.05)
12 (11.95, 12.05)
11.98 (11.95, 12.01)
12.03 (11.98, 12.08)
12.03 (11.96, 12.1)
12.02 (11.95, 12.09)
11.98 (11.94, 12.02)
11.99 (11.95, 12.03)
11.97 (11.95, 11.99)
11.99 (11.96, 12.02)
12.03 (11.96, 12.09)
12.01 (11.95, 12.07)
11.99 (11.94, 12.04)
12.01 (11.97, 12.05)
11.98 (11.96, 12)
12 (11.97, 12.03)
11.99 (11.95, 12.03)
11.97 (11.94, 12)

P,
84.6 (28.61, 130.42)

223.53 (30.74, 416.57)
154.32 (32.59, 299.34)
75.6 (27.77, 128.67)

208.62 (49.52, 379.35)
350.76 (109.99, 433.07)

235.84 (65.28, 358.14)
77.54 (27.78, 126.37)

130.63 (45.83, 272.17)
234.41 (187.45, 273.84)

343.52 (74.89, 422.27)

294.51 (109.14, 418.84)
74.05 (44.61, 112.28)
272.42 (219.52, 327.87)
253.45 (43.44, 426.77)
218.52 (33.95, 345.55)

254.66 (39.11, 435.28)
278.2 (53.83, 402.14)

Ps
202.98 (145.99, 256.8)

306.89 (153.79, 423.09)

369.61 (297.79, 413.25)

194.57 (146.95, 234.25)

several years [39], it has its main spectral peaks at periodicities within the 2-4 and 6-10 year
bands [40]. These are in good agreement with the inter-annual periodicities observed in the

posterior distributions of our models. Inferring causality from multi-decadal variability is more

difficult because the need for series that are long enough to resolve the timescales of interest.

There is, however, some evidence for the modulation of regional climate systems by global phe-
nomena at time scales comparable to those observed in some of our HREG models [41]. For
example, solar cycles, involving periodic changes in solar radiation, have been related to ob-

served multi-decadal periodicities in environmental processes such as river flows, lake water
levels and droughts [42].

For those lakes having two or more competing models (i.e., where ADIC < 4; n = 14), esti-

mates from models containing only the seasonal cycle produced trend estimates that were sig-
nificantly both less precise (Wilcoxon signed rank test, p = 0.031) and less accurate
(p =0.00012) than those from models incorporating inter-annual and inter-decadal cycles.

Further, the absolute magnitude of trends was consistently lower in models that comprised
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Fig 1. Posterior distributions of long-term cycle periods for lakes best described by multi-harmonic models. Posterior distributions of long-term (>2
year) cycle periods on monthly water levels for lakes best described by models containing (a) two harmonics with a seasonal [P; ~ U (6, 18)] and a long-term
harmonic [P, ~ U (24, N)] and (b) three harmonics comprising a seasonal [P; ~ U (6, 18)], an inter-annual harmonic [in grey; P> ~ U (24, 132)] and an inter-
decadal [in black; P ~ U (144, N)] harmonic. Numbers inside the panels indicate the periodicity corresponding to the main peak in each posterior distribution.
Truncated ends of the density functions correspond to either the limits of the prior interval or the end of the time series. Lake abbreviations as in Table 1.

doi:10.1371/journal.pone.0119253.9001

seasonal cycles alone compared with those that incorporated inter-annual and / or inter-
decadal cycles (Fig. 2; slope of the latter = 1.21, test of difference from 1:1 slope: t;4 = 2.4,

p =0.0155). These results therefore indicate clearly an importance of including long-term cy-
cles when quantifying and predicting trends in lake water levels and giving careful consider-
ation to the application of common procedures for trend extraction [43].

The annual percentage change in lake mean water level over the study period, as indicated
by the model trend component after accounting for seasonal and cyclic components, ranged
from-0.52 to 0.48% yr’1 (mean +s.e.: -0.09 £ 0.19% yr’l; n = 28). Overall, most lakes (89%) ex-
perienced negative trends, with 32% of these statistically significant (Fig. 3). Further, two of the
three positive trends detected were also significant. This overall downward trend was not ex-
pected given that many of these lakes are located in areas that have experienced significant in-
creases in precipitation in recent decades [44]. Nonetheless, we found no evidence of any
spatial trend pattern among the lakes (Global Moran’s I = -0.093, p = 0.49), suggesting that an-
thropogenic factors are likely to be primarily responsible for the observed trends in these lakes.
Water abstractions are one of the most important anthropogenic factors modifying catchment
water flow and storage [45], with impacts on hydrology likely to exceed projected impacts of
climate change [46]. Several of our study lakes are currently subject to water abstraction for

PLOS ONE | DOI:10.1371/journal.pone.0119253 March 10, 2015
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multi-harmonic model. The solid line is the linear regression relationship; the red dotted line shows the 1:1 line.

doi:10.1371/journal.pone.0119253.g002

consumption (Table 1, Fig. 3), reportedly the second most important human pressure on
aquatic ecosystems in Ireland after nutrient enrichment [47]. However, we found no significant
relationship between abstraction (i.e. annual volume abstracted from the lakes; Table 1) and
observed water level trends (Pearson’s p = 0.13, t,5 = 0.63; p = 0.51). The absence of such a rela-
tionship is likely a consequence of the mismatch between the temporal and spatial resolution
of the data; the abstraction data comprised current (2008-2009; no historical data on abstrac-
tion was available) annual total water volumes collated for lakes but did not include abstrac-
tions from tributaries or wells, which would have had significant influence on lake water level
dynamics. Further, our water level series were at monthly, rather than annual, resolutions. Col-
lection and incorporation of such data at appropriate spatiotemporal resolutions into lake
water balance models should provide improved quantification of the influence of water ab-
straction on the water level regimes of lakes [48].

Over decadal timescales, the observed trends in water levels could result in considerable
shifts in the area, volume and shoreline length of lakes, with important ecological consequences
both for the lakes themselves as well as their surrounding aquatic-terrestrial interface. Water
level recession may, for example, lead to changes in substrate composition by compacting and/
or redistributing littoral sediments to deeper parts of the lake [49], while water quality issues
may also arise from altered sedimentation and erosive littoral processes [50, 51]. Further, with
drawdown, air-exposed littoral sediment, frequently organically-enriched, can undergo com-
plex biogeochemical reactions leading to mobilization of metal-bound phosphorus due to des-
iccation and oxidation of sediments and increased nitrogen loss through runoff or leaching
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Fig 3. Predicted mean water level trends (squares) and 95% credible intervals (crosses) for the studied lakes. Closed symbols correspond to lakes
subject to abstraction activities with background bars corresponding to their respective current (2008—2009) annual abstraction volumes. Highly probable
trends are those for which their credible intervals do not intersect the red zero-threshold line.

doi:10.1371/journal.pone.0119253.g003

during episodic inundations [52]. Water level fluctuations may also lead to changes in patterns
of boundary mixing (i.e., the process of enhanced mixing near the lateral boundaries of a lake
which affects sediment resuspension and vertical nutrient fluxes), induced mainly in stratified
lakes by internal wave activity at the depth of the thermocline. Progressively declining water
levels would be expected to lower the thermocline and therefore displace boundary mixing
[53]. More extreme water level fluctuations can also affect stratification in freshwater lakes by
facilitating vertical mixing following large drawdowns (e.g., wind forcing or nocturnal convec-
tion; [54]). All these factors can complicate effective lake management and exacerbate water
quality problems by contributing to long-term eutrophication [55] and enhance the risk of
lakes failing to meet specified management or policy objectives. At the other extreme, a pro-
gressive increase in mean water levels, as found for some of our lakes, will also have important
management implications. For example, the flooding of terrestrial areas may reduce water
quality by introducing organic matter, nutrients and chemical pollutants to lakes [56]. Increas-
ing levels can also result in a net loss of important littoral habitat, such as reed beds, in favour
of open water areas, with important implications for biodiversity, given that littoral zones pro-
vide habitat for the significant majority of biological diversity in lakes [57].
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Conclusions

Our study helps to improve our understanding of the underlying patterns of variability in
water level dynamics and their associated effects in natural lakes, with clear application to
adaptive water resource management under an increasingly variable climate. We show that in-
corporation of long-term cycles can be important for predicting trends in lake water levels,
both in terms of the magnitude of the trends and the accuracy of predictions. Rapid demo-
graphic growth and uncertain hydrologic changes driven by global climate change are pre-
dicted to increase the number of people living under water shortage conditions in urban areas
to 850 million by 2050 [58]; a likely highly conservative estimate as it does not account for
water distribution or quality issues. The growing imbalance between water availability and de-
mand is expected to create unprecedented ecological problems [8]. As a result, adaptive inte-
grative strategies are needed to play an increasingly important role in directing water resource
management and policy-making as governments allocate significant investment to secure
water availability and ecosystem conservation.

Supporting Information

$1 Table. Summary model output for best and competing models. Summary of the mean co-
efficients and 95% credible intervals (in parentheses) corresponding to the best and other com-
peting models (i.e., models within 4 DIC of the selected model; shaded) obtained for the water
level series for each lake. Coefficients as described in the main text.
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