4 research outputs found

    Non-Autonomous Second-Order Memristive Chaotic Circuit

    Get PDF

    Exponential state estimation for competitive neural network via stochastic sampled-data control with packet losses

    Get PDF
    This paper investigates the exponential state estimation problem for competitive neural networks via stochastic sampled-data control with packet losses. Based on this strategy, a switched system model is used to describe packet dropouts for the error system. In addition, transmittal delays between neurons are also considered. Instead of the continuous measurement, the sampled measurement is used to estimate the neuron states, and a sampled-data estimator with probabilistic sampling in two sampling periods is proposed. Then the estimator is designed in terms of the solution to a set of linear matrix inequalities (LMIs), which can be solved by using available software. When the missing of control packet occurs, some sufficient conditions are obtained to guarantee that the exponentially stable of the error system by means of constructing an appropriate Lyapunov function and using the average dwell-time technique. Finally, a numerical example is given to show the effectiveness of the proposed method

    A Novel Memristive Multilayer Feedforward Small-World Neural Network with Its Applications in PID Control

    Get PDF
    In this paper, we present an implementation scheme of memristor-based multilayer feedforward small-world neural network (MFSNN) inspirited by the lack of the hardware realization of the MFSNN on account of the need of a large number of electronic neurons and synapses. More specially, a mathematical closed-form charge-governed memristor model is presented with derivation procedures and the corresponding Simulink model is presented, which is an essential block for realizing the memristive synapse and the activation function in electronic neurons. Furthermore, we investigate a more intelligent memristive PID controller by incorporating the proposed MFSNN into intelligent PID control based on the advantages of the memristive MFSNN on computation speed and accuracy. Finally, numerical simulations have demonstrated the effectiveness of the proposed scheme
    corecore