5 research outputs found

    A Synchronization-Based Hybrid-Memory Multi-Core Architecture for Energy-Efficient Biomedical Signal Processing

    Get PDF
    In the last decade, improvements on technology scaling have enabled the design of a novel generation of wearable bio-sensing monitors. These smart Wireless Body Sensor Nodes (WBSNs) are able to acquire and process biological signals, such as electrocardiograms, for periods of time extending from hours to days. The energy required for the on-node digital signal processing (DSP) is a crucial limiting factor in the conception of these devices. To address this design challenge, we introduce a domain-specific ultra-low power (ULP) architecture dedicated to bio-signal processing. The platform features a light-weight strategy to support different operating modes and synchronization among cores. Our approach effectively reduces the power consumption, harnessing the intrinsic parallelism and the workload requirements characterizing the target domain. Operations at low voltage levels are supported by a heterogeneous memory subsystem comprising a standard-cell based ultra-low voltage reliable partition. Experimental results show that, when executing real-world bio-signal DSP applications, a state-of-the-art multi-core architecture can improve its energy efficiency in up to 50% by utilizing our proposed approach, outperforming traditional single-core alternatives

    Hybrid memory architecture for voltage scaling in ultra-low power multi-core biomedical processors

    No full text
    Technology scaling enables today the design of sensor-based ultra-low cost chips well suited for emerging applications such as wireless body sensor networks, urban life and environment monitoring. Energy consumption is the key limiting factor of this up-coming revolution and memories are often the energy bottleneck mainly due to leakage power. This paper proposes an ultra-low power multi-core architecture targeting eHealth monitoring systems, where applications involve collection of sequences of slow biomedical signals and highly parallel computations at very low voltage. We propose a hybrid memory architecture that combines 6T-SRAM and 8T-SRAM operating in the same voltage domain and capable of dispatching at high voltage a normal operation and at low voltage a fully reliable small memory partition (8T) while the rest of the memory (6T) is state-retentive. Our architecture offers significant energy savings with a low area overhead in typical eHealth Compressed Sensing-based application

    Parallel Architectures for Many-Core Systems-On-Chip in Deep Sub-Micron Technology

    Get PDF
    Despite the several issues faced in the past, the evolutionary trend of silicon has kept its constant pace. Today an ever increasing number of cores is integrated onto the same die. Unfortunately, the extraordinary performance achievable by the many-core paradigm is limited by several factors. Memory bandwidth limitation, combined with inefficient synchronization mechanisms, can severely overcome the potential computation capabilities. Moreover, the huge HW/SW design space requires accurate and flexible tools to perform architectural explorations and validation of design choices. In this thesis we focus on the aforementioned aspects: a flexible and accurate Virtual Platform has been developed, targeting a reference many-core architecture. Such tool has been used to perform architectural explorations, focusing on instruction caching architecture and hybrid HW/SW synchronization mechanism. Beside architectural implications, another issue of embedded systems is considered: energy efficiency. Near Threshold Computing is a key research area in the Ultra-Low-Power domain, as it promises a tenfold improvement in energy efficiency compared to super-threshold operation and it mitigates thermal bottlenecks. The physical implications of modern deep sub-micron technology are severely limiting performance and reliability of modern designs. Reliability becomes a major obstacle when operating in NTC, especially memory operation becomes unreliable and can compromise system correctness. In the present work a novel hybrid memory architecture is devised to overcome reliability issues and at the same time improve energy efficiency by means of aggressive voltage scaling when allowed by workload requirements. Variability is another great drawback of near-threshold operation. The greatly increased sensitivity to threshold voltage variations in today a major concern for electronic devices. We introduce a variation-tolerant extension of the baseline many-core architecture. By means of micro-architectural knobs and a lightweight runtime control unit, the baseline architecture becomes dynamically tolerant to variations
    corecore