194,801 research outputs found

    A Case for Redundant Arrays of Hybrid Disks (RAHD)

    Get PDF
    Hybrid Hard Disk Drive was originally concepted by Samsung, which incorporates a Flash memory in a magnetic disk. The combined ultra-high-density benefits of magnetic storage and the low-power and fast read access of NAND technology inspires us to construct Redundant Arrays of Hybrid Disks (RAHD) to offer a possible alternative to today’s Redundant Arrays of Independent Disks (RAIDs) and/or Massive Arrays of Idle Disks (MAIDs). We first design an internal management system (including Energy-Efficient Control) for hybrid disks. Three traces collected from real systems as well as a synthetic trace are then used to evaluate the RAHD arrays. The trace-driven experimental results show: in the high speed mode, a RAHD outplays the purely-magnetic-disk-based RAIDs by a factor of 2.4–4; in the energy-efficient mode, a RAHD4/5 can save up to 89% of energy at little performance degradationPeer reviewe

    Giant Magnetoelastic Effects in BaTiO3-based Extrinsic Multiferroic Hybrids

    Full text link
    Extrinsic multiferroic hybrid structures consisting of ferromagnetic and ferroelectric layers elastically coupled to each other are promising due to their robust magnetoelectric effects even at room temperature. For a quantitative analysis of these magnetoelectric effects, a detailed knowledge of the piezoelectric and magnetoelastic behavior of both constituents as well as their mutual elastic coupling is mandatory. We here report on a theoretical and experimental study of the magnetic behavior of BaTiO3-based extrinsic multiferroic structures. An excellent agreement between molecular dynamics simulations and the experiments was found for Fe50Co50/BaTiO3 and Ni/BaTiO3 hybrid structures. This demonstrates that the magnetic behavior of extrinsic multiferroic hybrid structures can be determined by means of ab-initio calculations, allowing for the design of novel multiferroic hybrids

    The Magnetic Distortion Calibration System of the LHCb RICH1 Detector

    Get PDF
    The LHCb RICH1 detector uses hybrid photon detectors (HPDs) as its optical sensors. A calibration system has been constructed to provide corrections for distortions that are primarily due to external magnetic fields. We describe here the system design, construction, operation and performance.Comment: 9 pages, 14 figure

    Quantum probe and design for a chemical compass with magnetic nanostructures

    Full text link
    Magnetic fields as weak as Earth's may affect the outcome of certain photochemical reactions that go through a radical pair intermediate. When the reaction environment is anisotropic, this phenomenon can form the basis of a chemical compass and has been proposed as a mechanism for animal magnetoreception. Here, we demonstrate how to optimize the design of a chemical compass with a much better directional sensitivity simply by a gradient field, e.g. from a magnetic nanostructure. We propose an experimental test of these predictions, and suggest design principles for a hybrid metallic-organic chemical compass. In addition to the practical interest in designing a biomimetic weak magnetic field sensor, our result shows that gradient fields can server as powerful tools to probe spin correlations in radical pair reactions.Comment: 8 pages, 6 figures, comments are welcom

    Design of Adiabatic MTJ-CMOS Hybrid Circuits

    Full text link
    Low-power designs are a necessity with the increasing demand of portable devices which are battery operated. In many of such devices the operational speed is not as important as battery life. Logic-in-memory structures using nano-devices and adiabatic designs are two methods to reduce the static and dynamic power consumption respectively. Magnetic tunnel junction (MTJ) is an emerging technology which has many advantages when used in logic-in-memory structures in conjunction with CMOS. In this paper, we introduce a novel adiabatic hybrid MTJ/CMOS structure which is used to design AND/NAND, XOR/XNOR and 1-bit full adder circuits. We simulate the designs using HSPICE with 32nm CMOS technology and compared it with a non-adiabatic hybrid MTJ/CMOS circuits. The proposed adiabatic MTJ/CMOS full adder design has more than 7 times lower power consumtion compared to the previous MTJ/CMOS full adder

    Resonant spin-dependent electron coupling in a III-V/II-VI heterovalent double quantum well

    Full text link
    We report on design, fabrication, and magnetooptical studies of a III-V/II-VI hybrid structure containing a GaAs/AlGaAs/ZnSe/ZnCdMnSe double quantum well (QW). The structure design allows one to tune the QW levels into the resonance, thus facilitating penetration of the electron wave function from the diluted magnetic semiconductor ZnCdMnSe QW into the nonmagnetic GaAs QW and vice versa. Magneto-photoluminescence studies demonstrate level anticrossing and strong intermixing resulting in a drastic renormalization of the electron effective g factor, in perfect agreement with the energy level calculations.Comment: 4 pages, 5 Postscript figures, uses revtex
    • …
    corecore