12,356 research outputs found

    Hierarchical Decomposition of Nonlinear Dynamics and Control for System Identification and Policy Distillation

    Full text link
    The control of nonlinear dynamical systems remains a major challenge for autonomous agents. Current trends in reinforcement learning (RL) focus on complex representations of dynamics and policies, which have yielded impressive results in solving a variety of hard control tasks. However, this new sophistication and extremely over-parameterized models have come with the cost of an overall reduction in our ability to interpret the resulting policies. In this paper, we take inspiration from the control community and apply the principles of hybrid switching systems in order to break down complex dynamics into simpler components. We exploit the rich representational power of probabilistic graphical models and derive an expectation-maximization (EM) algorithm for learning a sequence model to capture the temporal structure of the data and automatically decompose nonlinear dynamics into stochastic switching linear dynamical systems. Moreover, we show how this framework of switching models enables extracting hierarchies of Markovian and auto-regressive locally linear controllers from nonlinear experts in an imitation learning scenario.Comment: 2nd Annual Conference on Learning for Dynamics and Contro

    Speech Synthesis Based on Hidden Markov Models

    Get PDF

    Hidden Markov models and neural networks for speech recognition

    Get PDF
    The Hidden Markov Model (HMMs) is one of the most successful modeling approaches for acoustic events in speech recognition, and more recently it has proven useful for several problems in biological sequence analysis. Although the HMM is good at capturing the temporal nature of processes such as speech, it has a very limited capacity for recognizing complex patterns involving more than first order dependencies in the observed data sequences. This is due to the first order state process and the assumption of state conditional independence between observations. Artificial Neural Networks (NNs) are almost the opposite: they cannot model dynamic, temporally extended phenomena very well, but are good at static classification and regression tasks. Combining the two frameworks in a sensible way can therefore lead to a more powerful model with better classification abilities. The overall aim of this work has been to develop a probabilistic hybrid of hidden Markov models and neural networks and ..
    corecore