5 research outputs found

    Multimodal Transportation p-hub Location Routing Problem with Simultaneous Pick-ups and Deliveries

    Get PDF
    Centralizing and using proper transportation facilities cut down costs and traffic. Hub facilities concentrate on flows to cause economic advantage of scale and multimodal transportation helps use the advantage of another transporter. A distinctive feature of this paper is proposing a new mathematical formulation for a three-stage p-hub location routing problem with simultaneous pick-ups and deliveries on time. A few studies have been devoted to this problem; however, many people are still suffering from the problems of commuting in crowded cities. The proposed formulation controlled the tumult of each node by indirect fixed cost. Node-to-node traveling cost was followed by a vehicle routing problem between nodes of each hub. A couple of datasets were solved for small and medium scales by GAMS software. But, for large-scale instances, a meta-heuristic algorithm was proposed. To validate the model, datasets were used and the results demonstrated the performance suitability of the proposed algorithm

    Planification du réseau d'accÚs pour l'amélioration de la rentabilité de l'infrastructure d'un réseau FTTN

    Get PDF
    RÉSUMÉ Étant donnĂ© l’offre de nouveaux services de rĂ©seau comme la tĂ©lĂ©vision haute dĂ©finition sur le protocole IP (Internet Protocol), de nouvelles architectures et technologies devraient ĂȘtre planifiĂ©es et introduites dans le rĂ©seau d’accĂšs afin d’amĂ©liorer le taux d’accĂšs. La meilleure solution est d’étendre le rĂ©seau de fibre jusqu’à l’abonnĂ©. Cependant, celle-ci est trĂšs coĂ»teuse et ne peut ĂȘtre largement dĂ©ployĂ©e de nos jours. Une alternative intĂ©ressante est la technologie FTTN (Fiber-to-the-node) qui rĂ©duit la portion de rĂ©seau utilisant le cuivre. Dans ce mĂ©moire, on commence par prĂ©senter un modĂšle de programmation mathĂ©matique de rĂ©seau d’accĂšs dans le but d’amĂ©liorer la rentabilitĂ© de l’infrastructure d’un rĂ©seau FTTN. Ce modĂšle consiste Ă  trouver le nombre et la localisation des noeuds, et sĂ©lectionner les chemins qui seront utilisĂ©s d’un noeud Ă  chaque point de demande. Le problĂšme a des contraintes qui limitent la capacitĂ© des noeuds et la distance entre chaque point de demande et le noeud qui le dessert. Le but est de minimiser la somme du coĂ»t des paires de cuivre Ă  installer et du coĂ»t d’installation des noeuds. Par la suite, la complexitĂ© du problĂšme est analysĂ©e. Nous montrons que des instances du problĂšme de grande taille ne peuvent ĂȘtre rĂ©solues de maniĂšre exacte dans un temps raisonnable, car le problĂšme est NP-difficile. Nous proposons donc une heuristique basĂ©e sur la recherche taboue dans le but de trouver de bonnes solutions dans un temps raisonnable. Les rĂ©sultats obtenus en utilisant l'heuristique taboue proposĂ©e sont comparĂ©s avec une borne infĂ©rieure obtenue en relĂąchant des contraintes du modĂšle mathĂ©matique. Celle-ci est calculĂ©e en utilisant le rĂ©solveur commercial CPLEX qui utilise l'algorithme d'Ă©valuation et sĂ©paration. Des tests effectuĂ©s avec des exemplaires du problĂšme gĂ©nĂ©rĂ©s de façon alĂ©atoire montrent que l'heuristique proposĂ©e donne des rĂ©sultats satisfaisants. En effet, la moyenne des Ă©carts est de 0,34 et le temps d'exĂ©cution est raisonnable.----------ABSTRACT Considering the introduction of new Internet Protocol (IP) services, new architecture and network technologies should be designed and introduced for the access network to improve the access rate. Actually, the best solution is to extend the fiber network and use the fiber-to-the-home (FTTH) architecture. However, this solution is still too costly and cannot be widely deployed. An interesting alternative is the fiber-to-the-node (FTTN) architecture, which reduces the copper portion of the access network. In this document, an integer mathematical programming model is proposed for the access network design in order to improve the profitability of the FTTN infrastructure. It consists in finding the number and the location of the nodes, and selecting the way each point of demand will be connected with the node that is assigned to serve it. The problem has constraints that limit the nodes capacity and the distance between each point of demand and the node that is assigned to serve it. The goal is to minimise the cost of deploying the copper links and the cost of setting the nodes. The problem complexity will then be analysed. We show that large problem instances cannot be solved to the optimum in a reasonable amount of time because the problem is NP-hard. Next, we propose a heuristic based on the tabu search to find good solutions. The results of the tabu heuristic are compared to a lower bound found by solving a relaxed version of the model with CPLEX that uses the branch-and-bound algorithm. The heuristic was tested with randomly generated instances of the problem. The results show that the proposed heuristic finds good quality solutions

    Support des applications multimédia dans les réseaux de prochaine génération

    Get PDF
    RÉSUMÉ Les applications multimĂ©dia sont devenues tellement populaires que certaines d’entre elles sont utilisĂ©es quotidiennement par les usagers. Cette popularitĂ© peut ĂȘtre attribuĂ©e Ă  plusieurs facteurs, tels que la diversiïŹcation du contenu et des services oïŹ€erts, l’accĂšs en tout temps grĂące Ă  la mobilitĂ© et Ă  la nomadicitĂ©, ainsi qu’aux avancĂ©es au niveau des architectures et des protocoles utilisĂ©s, aïŹn de supporter les requis plus exigeants de ces applications. Par exemple, ce qui Ă©tait jadis un simple appel tĂ©lĂ©phonique, se transforme dĂ©sormais en une vidĂ©oconfĂ©rence, permettant Ă  un nombre dynamique d’usagers d’y participer. Un autre exemple d’application multimĂ©dia, qui connait Ă©galement un essor fulgurant, est IP TeleVision (IPTV), soit la technologie permettant la transmission de la tĂ©lĂ©vision, en direct et sur demande, sur des rĂ©seaux IP. On retrouve Ă©galement sa version mobile, soit Mobile IP TeleVision (MobileTV). Du cĂŽtĂ© des opĂ©rateurs, le focus est mis sur le dĂ©ploiement des rĂ©seaux de prochaine gĂ©nĂ©ration. Les opĂ©rateurs sans-ïŹl se tournent vers les technologies cellulaires de quatriĂšme gĂ©nĂ©ration, telles que 3GPP Long Term Evolution (LTE), alors que ceux qui oïŹ€rent les services ïŹlaires regardent plutĂŽt vers les rĂ©seaux basĂ©s sur la ïŹbre optique, tels que Fiber to the Home (FTTH). Ces rĂ©seaux promettent d’augmenter le dĂ©bit oïŹ€ert, ainsi que de rĂ©duire la latence, soit deux critĂšres importants pour le dĂ©ploiement des applications multimĂ©dia Ă  grande Ă©chelle. MalgrĂ© ces avancĂ©es technologiques, il existe encore plusieurs obstacles au bon fonctionnement des applications multimĂ©dia. Dans cette optique, cette thĂšse se penche sur trois problĂ©matiques importantes dans les rĂ©seaux de prochaine gĂ©nĂ©ration, chacune faisant l’objet d’un article scientiïŹque. Les deux premiers volets s’attardent sur la convergence des rĂ©seaux ïŹxes et mobiles, ou Fixed-Mobile Convergence (FMC). Cette convergence vient brouiller la distinction entre les rĂ©seaux mobiles et les rĂ©seaux ïŹxes. Entre autre, elle permet Ă  un usager d’avoir accĂšs Ă  ses services, autant sur le rĂ©seau cellulaire (LTE, par exemple) que sur un rĂ©seau local (Wireless Fidelity (WiFi), par exemple). Pour s’y faire, l’usager est gĂ©nĂ©ralement muni d’un terminal pouvant se connecter sur les deux rĂ©seaux. La premiĂšre problĂ©matique soulevĂ©e dans cette thĂšse est au niveau de la prise de dĂ©cision de la relĂšve. En eïŹ€et, les deux protocoles de mobilitĂ© les plus populaires, soit Mobile IP (MIP) et Proxy Mobile IP (PMIP), adoptent deux approches diamĂ©tralement opposĂ©es. Avec le premier protocole, ce sont l’usager et son terminal qui prennent entiĂšrement en charge la relĂšve. MĂȘme si cette approche permet la FMC, les opĂ©rateurs prĂ©fĂšrent plutĂŽt garder le contrĂŽle sur la prise de dĂ©cision, aïŹn de pouvoir optimiser leur rĂ©seau. En eïŹ€et, avec MIP, beaucoup de messages de signalisation sont envoyĂ©s, ce qui gaspille des ressources rĂ©seaux, surtout au niveau de l’accĂšs radio, la partie la plus prĂ©cieuse du rĂ©seau. De plus, en ne sollicitant pas le rĂ©seau, le terminal ne prend pas nĂ©cessairement les meilleures dĂ©cisions. Il peut donc basculer vers un rĂ©seau qui est plus chargĂ© et qui ne garantit pas nĂ©cessairement ses exigences au niveau de la qualitĂ© de service. De ce fait, le protocole PMIP a Ă©tĂ© proposĂ©. Son approche est exactement Ă  l’opposĂ© de celle de MIP, soit la mobilitĂ© qui est entiĂšrement gĂ©rĂ©e par le rĂ©seau. De ce fait, la mobilitĂ© est masquĂ©e au niveau du terminal, qui pense toujours se trouver dans son rĂ©seau mĂšre. GrĂące Ă  l’ajout de nouveaux nƓuds dans le rĂ©seau, qui gĂšrent la mobilitĂ© Ă  la place du terminal, on Ă©limine la signalisation sur l’accĂšs radio. De plus, les informations supplĂ©mentaires que le rĂ©seau dĂ©tient lui permettront de prendre une meilleure dĂ©cision. Par contre, le problĂšme avec ce protocole est que, sans l’intervention du terminal, il lui est impossible de dĂ©tecter toutes les situations de relĂšves. Dans plusieurs cas, le rĂ©seau ïŹxe de l’opĂ©rateur est masquĂ© par un rĂ©seau interne, par exemple un rĂ©seau WiFi, et la dĂ©tection de ce rĂ©seau n’est possible que grĂące Ă  l’intervention du terminal. Ainsi, PMIP n’est pas un protocole qui se prĂȘte bien au dĂ©ploiement de FMC. Le premier article, qui s’intitule « Client-Based Network-Assisted Mobile IPv6 », s’attaque donc Ă  ce problĂšme, en proposant un nouveau protocole, basĂ© sur Mobile IP v6 (MIPv6), et qui introduit l’implication du rĂ©seau. Le rĂ©sultat obtenu est un protocole hybride qui combine les avantages de MIPv6 et de Proxy Mobile IP v6 (PMIPv6). Pour s’y faire, deux Ă©tapes ont Ă©tĂ© nĂ©cessaires. La premiĂšre consiste en une refonte du protocole MIPv6 qui, dans son Ă©tat actuel, Ă©tait diïŹƒcile Ă  modiïŹer, Ă  cause de ses spĂ©ciïŹcations qui sont lourdes. Le rĂ©sultat de cette Ă©tape est un protocole beaucoup plus lĂ©ger et oïŹ€rant uniquement les fonctionnalitĂ©s de base. Les autres fonctionnalitĂ©s, telles que les mĂ©canismes de sĂ©curitĂ©, ont Ă©tĂ© sĂ©parĂ©es dans des modules. En deuxiĂšme lieu, un nouveau module a Ă©tĂ© proposĂ©, qui introduit un nouveau nƓud dans le rĂ©seau, capable de gĂ©rer la mobilitĂ© du terminal. Ainsi, la collaboration entre le terminal et ce nƓud permet de rĂ©duire les messages de signalisation et d’optimiser les dĂ©cisions au niveau des relĂšves, tout en oïŹ€rant le support pour FMC. La deuxiĂšme problĂ©matique, sur laquelle la thĂšse porte, se trouve au niveau de la transparence de la relĂšve entre les deux rĂ©seaux. On parle d’une relĂšve qui est transparente si cette derniĂšre n’engendre aucune interruption des services de l’usager. Par exemple, un appel en cours, qui est dĂ©marrĂ© sur le rĂ©seau cellulaire, ne doit pas ĂȘtre interrompu lorsque la connexion bascule sur le rĂ©seau local, et vice-versa. Les applications visĂ©es, par notre travail, sont les applications multimĂ©dia en temps rĂ©Ă©l, notamment IPTV et MobileTV (en mode tĂ©lĂ©vision en direct). Ces applications emploient des protocoles de multidiïŹ€usion permettant l’envoi optimisĂ© de donnĂ©es Ă  partir d’une ou de plusieurs sources vers plusieurs destinataires, avec un nombre minimal de paquets. Le problĂšme avec ces applications est que, lorsqu’une relĂšve verticale survient (dans le cadre de FMC par exemple), la connexion est rompue et doit ĂȘtre rĂ©Ă©tablie. Ceci est dĂ» au fait que le terminal change son adresse IP, ce qui le force Ă  rejoindre ses services Ă  partir de la nouvelle adresse. Cette dĂ©connexion rĂ©sulte en une perte de paquets, se traduisant par une interruption de l’application de l’usager. Le second article, qui s’intitule « Seamless handover for multicast Mobile IPv6 traïŹƒc », propose une solution Ă  ce problĂšme. Cette solution consiste en l’ajout d’un nouveau nƓud, dans le rĂ©seau, dont le rĂŽle est de mettre en tampon les paquets perdus, lors de la relĂšve du terminal. Ainsi, lorsque ce dernier recouvre sa connectivitĂ©, il est en mesure de rĂ©cupĂ©rer ces paquets auprĂšs de ce nƓud. L’application de l’usager se dĂ©roule alors sans interruption. La troisiĂšme problĂ©matique abordĂ©e dans cette thĂšse porte sur la planiïŹcation des rĂ©seaux d’accĂšs, aïŹn de supporter les requis des applications multimĂ©dia au niveau du dĂ©bit. Pour que la FMC soit rĂ©ussie, il faut que le rĂ©seau local puisse supporter les dĂ©bits nĂ©cessaires de l’application. Le rĂ©seau WiFi interne n’étant gĂ©nĂ©ralement pas un problĂšme, la limitation se trouve plutĂŽt au niveau de l’accĂšs ïŹlaire. AïŹn d’augmenter les dĂ©bits oïŹ€erts, les opĂ©rateurs ont introduit la ïŹbre optique dans leurs rĂ©seaux, complĂ©mentant ainsi les mĂ©thodes traditionnelles, tels les paires de cuivre torsadĂ©es et le cĂąble coaxial. Ainsi, de nouvelles technologies optiques hybrides ont Ă©tĂ© proposĂ©es. Dans un contexte o`u une infrastructure est dĂ©jĂ  existante, le choix d’une technologie hybride est trĂšs attrayant, car l’opĂ©rateur peut rentabiliser son investissement prĂ©cĂ©dent, minimisant ainsi le coĂ»t de la mise Ă  jour. Par contre, dans un environnement vierge, il n’existe pas d’infrastructure Ă  rĂ©utiliser. Le consensus, dans un tel scĂ©nario, est que la meilleure technologie Ă  dĂ©ployer est celle qui n’emploie que des liens en ïŹbre optique, car elle oïŹ€re les meilleurs dĂ©bits ainsi que la plus grande ïŹ‚exibilitĂ© au niveau de l’évolutivitĂ©. La diïŹ€Ă©rence, au niveau du coĂ»t, devient moins grande et n’est plus nĂ©cessairement le critĂšre principal au niveau du choix de la technologie Ă  dĂ©ployer. Une des diïŹƒcultĂ©s, qui compliquent la planiïŹcation, est que ces rĂ©seaux sont souvent dĂ©ployĂ©s par les opĂ©rateurs, en phases. La planiïŹcation doit ĂȘtre alors dynamique et prendre en considĂ©ration la nature Ă©volutive de la demande des clients. Le troisiĂšme article, qui s’intitule « Dynamic GreenïŹeld Fiber to the Home Planning », propose donc une modĂ©lisation dynamique du problĂšme de planiïŹcation des rĂ©seaux d’accĂšs en ïŹbre optique. Le rĂ©sultat est un modĂšle mathĂ©matique linĂ©aire, en nombres entiers, qui prend en entrĂ©e des paramĂštres, tels que les demandes des clients, et qui produit la planiïŹcation minimisant le coĂ»t total du rĂ©seau et ce, sur plusieurs phases. Les rĂ©sultats numĂ©riques obtenus en simulant notre modĂšle montrent sa supĂ©rioritĂ© par rapport aux mĂ©thodes sĂ©quentielles existantes.--------- ABSTRACT Multimedia applications have been gaining momentum and are ïŹnding their way into everyday life. Their popularity can be attributed to several factors, such as the diversiïŹcation of content and services, ubiquitous access thanks to the mobility and nomadicity, as well as advances in architectures and protocols used to support their most demanding requirements. For example, what was once a simple phone call has morphed nowadays into a videoconference, allowing a dynamic number of users to participate. Another example of a multimedia application that gained popularity is IP TeleVision (IPTV), which is the technology that allows the transmission of live and on demand television, on IP networks. There also exists a mobile version, called Mobile IP TeleVision (MobileTV). From the operators’ point of view, the focus is put on the deployment of next generation networks. Wireless operators are therefore deploying fourth generation cellular technologies, such as 3GPP Long Term Evolution (LTE), while those oïŹ€ering wired connectivity are looking into ïŹber optical based networks, such as Fiber to the Home (FTTH). These new networks increase the rate oïŹ€ered, as well as reduce latency, which are two important criteria for the deployment of large-scale multimedia applications. However, despite these advances, there still exist several obstacles hindering the proper operation of multimedia applications. This thesis therefore focuses on three important issues in next generation networks, each of these subjects leading to a scientiïŹc article. The ïŹrst two works deal with the issues of the Fixed-Mobile Convergence (FMC). This convergence is blurring the distinction between mobile and ïŹxed networks. Among other things, it allows a user to have access to its services, both on the cellular network (LTE, for example) as well as on a local network (Wireless Fidelity (WiFi), for example). This is usually accomplished by equipping the user with a device with that can connect to both networks. The ïŹrst issue raised in this thesis is about the decision of when to execute a handover. The two most popular mobility protocols, Mobile IP (MIP) and Proxy Mobile IP (PMIP), approach this problem with diametrically opposed views. With the ïŹrst protocol, the decision is made by the user and his device. Although this approach allows for FMC, operators would much rather have complete control over the decision-making, in order to optimize their network. Indeed, with MIP, many signaling messages are sent, wasting valuable network resources, especially at the radio access, which is the most precious part of the network. Furthermore, by not involving the network, the decision taken by the device will not be necessarily optimal. It might request to switch to a more overloaded network, that cannot meet its demands of Quality of Service (QoS). For these reasons, the PMIP protocol was proposed. Its approach is the opposite of that of MIP, the mobility being managed entirely by the network. By doing so, the device is actually shielded from any aspect of the mobility, and is fooled into thinking that its always in its home network. This is possible by introducing new nodes in the networks that act on its behalf, which eliminates all signaling on the radio link. In addition, since the network is usually better suited to make the right decision, because of the additional information it holds, the mobility is optimized. However, the big issue that arises is that, without the intervention of the terminal, it is impossible to detect all the handover possibilities. In many cases, the operator’s ïŹxed network is hidden by an internal network, usually a WiFi network, and the detection of the network is only possible with the help of the terminal. Thus, PMIP is not a protocol that is well suited to deploy FMC. The ïŹrst article, entitled “Client-Based Network-Assisted Mobile IPv6”, therefore addresses this problem by proposing a new protocol based on Mobile IP v6 (MIPv6), in which we introduce the involvement of the network. The result is a hybrid protocol that draws upon the strength of MIPv6 and Proxy Mobile IP v6 (PMIPv6). To accomplish this, two steps were required. The ïŹrst consisted of a complete overhaul of the MIPv6 protocol, as in its current state, it was near impossible to make any modiïŹcations, because of the complexity and heaviness of its speciïŹcations. The result is a much more lightweight protocol which provides only basic functionality. Other features, such as security mechanisms, were separated into modules. In the second step, we proposed a new module, which introduces a new node in the network that can handle the terminal mobility. Thus, the collaboration of the terminal and the new node reduces the signaling messages and optimizes the decisions for handing over, while still oïŹ€ering support for FMC. The second issue that this thesis tackles is the seamlessness of a handover between two networks. A handover is deemed seamless if it does not cause any disruption to the user’s services. For example, a call that is in progress on the cellular network should not be interrupted when the connection switches to a local network, and the same goes for the other way around. The applications targeted by our work are multimedia applications operating in real-time , such as IPTV and MobileTV (in live television mode). These applications employ multicast protocols that are optimized for the transmission of data from one or more sources to multiple receivers, while using the minimum number of packets required. The problem, however, with these applications is that when a vertical handover occurs (in the case of FMC, for example), the connection is lost and must be re-established. This is because the terminal changes its IP address, which forces it to rejoin the services from the new address. This disconnection results in a packet loss, which entails an interruption of the user application. The second article, entitled “Seamless handover for multicast Mobile IPv6 traïŹƒc”, proposes a solution to this problem. This is accomplished by introducing a new node in the network, whose role is to buïŹ€er the lost packets while the handover is occurring. Thus, when the device reconnects, it is able to recover these packets. The user application is therefore able to proceed without interruption. The third issue addressed in this thesis focuses on the planning of access networks, to support the high bandwidth required by multimedia applications. For the FMC to be successful, it is necessary that the local network supports the bandwidth requirements. The internal WiFi network is generally not an issue, the limitation rather lies in the wired network. To increase the oïŹ€ered rates, operators have started introducing ïŹber optic links in their networks, complementing the traditional links, such as twisted pair copper and coaxial cable. Thus, new hybrid optical technologies have been proposed. In a context where an infrastructure already exists, the choice of a hybrid technology is very attractive, because the operator can leverage its previous investment and minimize the cost of the upgrade. However, in a new environment, there is no infrastructure to reuse. Therefore, the consensus in such a scenario is that the best technology to deploy is the one that only uses ïŹber optic links, as it oïŹ€ers the best rates and the greatest scalability. The cost diïŹ€erence is smaller and therefore no longer the main criterion for selecting the technology to deploy. One of the diïŹƒculties of network planning is that these networks are often deployed by operators in phases. Therefore, the planning must be dynamic and take into account the changing nature of customer demands. The third article, entitled “Dynamic GreenïŹeld Fiber to the Home Planning”, proposes a dynamic model for the network planning problem of ïŹber optic networks. The result is a linear integer mathematical model, which takes input parameters, such as customer demands, and produces a planning that minimizes the total cost of the network, over all of the phases. The numerical results obtained when simulating our solution show its superiority compared to existing sequential methods

    Two-level Network Design With Intermediate Facilities: An Application To Electrical Distribution Systems

    No full text
    We consider the two-level network design problem with intermediate facilities. This problem consists of designing a minimum cost network respecting some requirements, usually described in terms of the network topology or in terms of a desired flow of commodities between source and destination vertices. Each selected link must receive one of two types of edge facilities and the connection of different edge facilities requires a costly and capacitated vertex facility. We propose a hybrid decomposition approach which heuristically obtains tentative solutions for the vertex facilities number and location and use these solutions to limit the computational burden of a branch-and-cut algorithm. We test our method on instances of the power system secondary distribution network design problem. The results show that the method is efficient both in terms of solution quality and computational times. © 2010 Elsevier Ltd.391313Gavish, B., Topological design of telecommunications networks-local access design methods (1991) Annals of Operations Research, 33, pp. 17-71Mateus, G.R., Cruz, F.R.B., Luna, H.P.L., An algorithm for hierarchical network design (1994) Location Science, 2, pp. 149-164Gouveia, L., Lopes, M.J., Using generalized capacitated trees for designing the topology of local access networks (1997) Telecommunications Systems, 7, pp. 315-337de Jongh, A., Gendreau, M., Labbe, M., Finding disjoint routes in telecommunications networks with two technologies (1999) Operations Research, 47, pp. 81-92Patterson, R.A., Rolland, E., Hybrid fiber coaxial network design (2002) Operations Research, 50, pp. 538-551Yaman, H., Carello, G., Solving the hub location problem with modular link capacities (2005) Computers & Operations Research, 32, pp. 3227-3245Pirkul, H., Narasinham, S., Locating concentrators for primary and secondary coverage in a computer communication network (1988) IEEE Transactions on Communications, 36, pp. 450-458PiĂłro, M., Medhi, D., (2004) Routing, flow and capacity design in communication and computer networks, , Morgan Kaufmann, San FranciscoIgnacio, A.A.V., Ferreira Filho, V.J., GalvĂŁo, R.D., Lower and upper bounds for a two-level hierarchical location problem in computer networks (2008) Computers & Operations Research, 35, pp. 1982-1998Fleischmann, M., Bloemhof-Ruwaard, J.M., Dekker, R., van der Laan, E., van Nunen, J.A.E.E., Wassenhove, L.N.V., Quantitative models for reverse logistics: a review (1997) European Journal of Operational Research, 103, pp. 1-17Srivastava, S.K., Network design for reverse logistics (2008) Omega, 36, pp. 535-548Gupta, R., Pirkul, H., Hybrid fiber co-axial CATV network design with variable capacity optical network units (2000) European Journal of Operational Research, 123, pp. 73-85Gouveia, L., Janssen, E., Designing reliable tree networks with two cable technologies (1998) European Journal of Operational Research, 105, pp. 552-568Lee, K., Park, K., Park, S., Design of capacitated networks with tree configurations (1996) Telecommunications Systems, 6, pp. 1-19Balakrishnan, A., Magnanti, T.L., Mirchandani, P., Modeling and heuristic worst-case performance analysis of the two-level network design problem (1994) Management Science, 40, pp. 846-867Daskin, M.S., (1995) Network and discrete location: models, algorithms, and applications, , Wiley, New YorkSahin, G., SĂŒral, H., A survey of hierarchical facility location models (2007) Computers & Operations Research, 34, pp. 2310-2331Toth, P., Vigo, D., The granular tabu search and its application to the vehicle-routing problem (2003) INFORMS Journal on Computing, 15, pp. 333-346Carneiro, M.S., França, P.M., Silveira, P.D., Long-range planning of power distribution systems secondary networks (1996) Computers & Electrical Engineering, 22, pp. 179-191Aoki, K., Nara, K., Satoh, T., Kitagawa, M., Yamanaka, K., New approximate optimization method for distribution system planning (1990) IEEE Transactions on Power Systems, 5, pp. 126-132Diaz-Dorado, E., Miguez, E., Cidras, J., Design of large rural low-voltage networks using dynamic programming optimization (2001) IEEE Transactions on Power Systems, 16 (4), pp. 898-903Diaz-Dorado, E., Pidre, J., Garcia, E., Planning of large rural low-voltage networks using evolution strategies (2003) IEEE Transactions on Power Systems, 18 (4), pp. 1594-1600Cossi, A.M., Romero, R., Mantovani, J.R.S., Planning of secondary distribution circuits through evolutionary algorithms (2005) IEEE Transactions on Power Delivery, 20, pp. 205-213Senne, E.L.F., Lorena, L.A.N., Lagrangean/surrogate heuristics for p-median problems (2000) Computing tools for modeling, optimization and simulation: interfaces in computer science and operations research, pp. 115-30. , Dordrecht: Kluwer;Fisher, M.L., The Lagrangian relaxation method for solving integer programing problems (2004) Management Science, 50, pp. 1861-1871Aneja, Y.P., An integer linear programming approach to Steiner problems in graphs (1980) Networks, 10, pp. 167-17
    corecore