1,808 research outputs found

    Optimal Checkpointing for Secure Intermittently-Powered IoT Devices

    Full text link
    Energy harvesting is a promising solution to power Internet of Things (IoT) devices. Due to the intermittent nature of these energy sources, one cannot guarantee forward progress of program execution. Prior work has advocated for checkpointing the intermediate state to off-chip non-volatile memory (NVM). Encrypting checkpoints addresses the security concern, but significantly increases the checkpointing overheads. In this paper, we propose a new online checkpointing policy that judiciously determines when to checkpoint so as to minimize application time to completion while guaranteeing security. Compared to state-of-the-art checkpointing schemes that do not account for the overheads of encrypted checkpoints we improve execution time up to 1.4x.Comment: ICCAD 201

    Wearable flexible lightweight modular RFID tag with integrated energy harvester

    Get PDF
    A novel wearable radio frequency identification (RFID) tag with sensing, processing, and decision-taking capability is presented for operation in the 2.45-GHz RFID superhigh frequency (SHF) band. The tag is powered by an integrated light harvester, with a flexible battery serving as an energy buffer. The proposed active tag features excellent wearability, very high read range, enhanced functionality, flexible interfacing with diverse low-power sensors, and extended system autonomy through an innovative holistic microwave system design paradigm that takes antenna design into consideration from the very early stages. Specifically, a dedicated textile shorted circular patch antenna with monopolar radiation pattern is designed and optimized for highly efficient and stable operation within the frequency band of operation. In this process, the textile antenna's functionality is augmented by reusing its surface as an integration platform for light-energy-harvesting, sensing, processing, and transceiver hardware, without sacrificing antenna performance or the wearer's comfort. The RFID tag is validated by measuring its stand-alone and on-body characteristics in free-space conditions. Moreover, measurements in a real-world scenario demonstrate an indoor read range up to 23 m in nonline-of-sight indoor propagation conditions, enabling interrogation by a reader situated in another room. In addition, the RFID platform only consumes 168.3 mu W, when sensing and processing are performed every 60 s

    Solar Energy Harvesting to Improve Capabilities of Wearable Devices

    Get PDF
    The market of wearable devices has been growing over the past decades. Smart wearables are usually part of IoT (Internet of things) systems and include many functionalities such as physiological sensors, processing units and wireless communications, that are useful in fields like healthcare, activity tracking and sports, among others. The number of functions that wearables have are increasing all the time. This result in an increase in power consumption and more frequent recharges of the battery. A good option to solve this problem is using energy harvesting so that the energy available in the environment is used as a backup power source. In this paper, an energy harvesting system for solar energy with a flexible battery, a semi-flexible solar harvester module and a BLE (Bluetooth® Low Energy) microprocessor module is presented as a proof-of-concept for the future integration of solar energy harvesting in a real wearable smart device. The designed device was tested under different circumstances to estimate the increase in battery lifetime during common daily routines. For this purpose, a procedure for testing energy harvesting solutions, based on solar energy, in wearable devices has been proposed. The main result obtained is that the device could permanently work if the solar cells received a significant amount of direct sunlight for 6 h every day. Moreover, in real-life scenarios, the device was able to generate a minimum and a maximum power of 27.8 mW and 159.1 mW, respectively. For the wearable system selected, Bindi, the dynamic tests emulating daily routines has provided increases in the state of charge from 19% (winter cloudy days, 4 solar cells) to 53% (spring sunny days, 2 solar cells). Keywords: energy harvesting; internet of things; physiologicalThis research was funded by the Department of Research and Innovation of Madrid Regional Authority, in the EMPATIA-CM research project (reference Y2018/TCS-5046). This work has been partially supported by the European Union—NextGenerationEU, with the SAPIENTIAE4BINDI project “Proof of Concept” 2021. (Ref: PDC2021-121071-I00/AEI/10.13039/501100011033). This work has been supported by the Madrid Government (Comunidad de Madrid-Spain) under the Multiannual Agreement with UC3M in the line of Excellence of University Professors (EPUC3M26), and in the context of the V PRICIT (Regional Programme of Research and Technological Innovation)

    PhyNetLab: An IoT-Based Warehouse Testbed

    Full text link
    Future warehouses will be made of modular embedded entities with communication ability and energy aware operation attached to the traditional materials handling and warehousing objects. This advancement is mainly to fulfill the flexibility and scalability needs of the emerging warehouses. However, it leads to a new layer of complexity during development and evaluation of such systems due to the multidisciplinarity in logistics, embedded systems, and wireless communications. Although each discipline provides theoretical approaches and simulations for these tasks, many issues are often discovered in a real deployment of the full system. In this paper we introduce PhyNetLab as a real scale warehouse testbed made of cyber physical objects (PhyNodes) developed for this type of application. The presented platform provides a possibility to check the industrial requirement of an IoT-based warehouse in addition to the typical wireless sensor networks tests. We describe the hardware and software components of the nodes in addition to the overall structure of the testbed. Finally, we will demonstrate the advantages of the testbed by evaluating the performance of the ETSI compliant radio channel access procedure for an IoT warehouse

    A Combined 90/900 MHz IC Architecture for Smart Tag Application

    Get PDF
    In this work we present a combined 90/900 MHz Energy Harvesting Architecture for active smart tag Application. The harvester takes advantages from a dedicated diplexer and a power manager for battery life enhancement purposes. The system has been optimized in the 900 MHz frequency range by analyzing a probabilistic approach used for modeling the possible amount of Global System for Mobile communication (GSM) energy that could be harvested while a fixed power downlink scenario has been adopted for the 90MHz band. A preliminary IC system with a 0.18ÎĽm CMOS SMIC technology has been designed and optimized at 90 and 900 MHz while discrete element board, to be integrated with the proposed IC, with commercial components has been developed and tested. Concerning simulation results on the IC design they have confirmed that the integrated system handles an incoming power typically ranging from -25 dBm to 5 dBm by rectifying the variable input signals into a DC voltage source with an average 50% efficiency
    • …
    corecore