353,835 research outputs found
Adaptive Density Estimation for Generative Models
Unsupervised learning of generative models has seen tremendous progress over
recent years, in particular due to generative adversarial networks (GANs),
variational autoencoders, and flow-based models. GANs have dramatically
improved sample quality, but suffer from two drawbacks: (i) they mode-drop,
i.e., do not cover the full support of the train data, and (ii) they do not
allow for likelihood evaluations on held-out data. In contrast,
likelihood-based training encourages models to cover the full support of the
train data, but yields poorer samples. These mutual shortcomings can in
principle be addressed by training generative latent variable models in a
hybrid adversarial-likelihood manner. However, we show that commonly made
parametric assumptions create a conflict between them, making successful hybrid
models non trivial. As a solution, we propose to use deep invertible
transformations in the latent variable decoder. This approach allows for
likelihood computations in image space, is more efficient than fully invertible
models, and can take full advantage of adversarial training. We show that our
model significantly improves over existing hybrid models: offering GAN-like
samples, IS and FID scores that are competitive with fully adversarial models,
and improved likelihood scores
A Survey on Joint Object Detection and Pose Estimation using Monocular Vision
In this survey we present a complete landscape of joint object detection and
pose estimation methods that use monocular vision. Descriptions of traditional
approaches that involve descriptors or models and various estimation methods
have been provided. These descriptors or models include chordiograms,
shape-aware deformable parts model, bag of boundaries, distance transform
templates, natural 3D markers and facet features whereas the estimation methods
include iterative clustering estimation, probabilistic networks and iterative
genetic matching. Hybrid approaches that use handcrafted feature extraction
followed by estimation by deep learning methods have been outlined. We have
investigated and compared, wherever possible, pure deep learning based
approaches (single stage and multi stage) for this problem. Comprehensive
details of the various accuracy measures and metrics have been illustrated. For
the purpose of giving a clear overview, the characteristics of relevant
datasets are discussed. The trends that prevailed from the infancy of this
problem until now have also been highlighted.Comment: Accepted at the International Joint Conference on Computer Vision and
Pattern Recognition (CCVPR) 201
Neural Network Dynamics for Model-Based Deep Reinforcement Learning with Model-Free Fine-Tuning
Model-free deep reinforcement learning algorithms have been shown to be
capable of learning a wide range of robotic skills, but typically require a
very large number of samples to achieve good performance. Model-based
algorithms, in principle, can provide for much more efficient learning, but
have proven difficult to extend to expressive, high-capacity models such as
deep neural networks. In this work, we demonstrate that medium-sized neural
network models can in fact be combined with model predictive control (MPC) to
achieve excellent sample complexity in a model-based reinforcement learning
algorithm, producing stable and plausible gaits to accomplish various complex
locomotion tasks. We also propose using deep neural network dynamics models to
initialize a model-free learner, in order to combine the sample efficiency of
model-based approaches with the high task-specific performance of model-free
methods. We empirically demonstrate on MuJoCo locomotion tasks that our pure
model-based approach trained on just random action data can follow arbitrary
trajectories with excellent sample efficiency, and that our hybrid algorithm
can accelerate model-free learning on high-speed benchmark tasks, achieving
sample efficiency gains of 3-5x on swimmer, cheetah, hopper, and ant agents.
Videos can be found at https://sites.google.com/view/mbm
- …
