6 research outputs found

    From Neural Activations to Concepts: A Survey on Explaining Concepts in Neural Networks

    Full text link
    In this paper, we review recent approaches for explaining concepts in neural networks. Concepts can act as a natural link between learning and reasoning: once the concepts are identified that a neural learning system uses, one can integrate those concepts with a reasoning system for inference or use a reasoning system to act upon them to improve or enhance the learning system. On the other hand, knowledge can not only be extracted from neural networks but concept knowledge can also be inserted into neural network architectures. Since integrating learning and reasoning is at the core of neuro-symbolic AI, the insights gained from this survey can serve as an important step towards realizing neuro-symbolic AI based on explainable concepts.Comment: Submitted to Neurosymbolic Artificial Intelligence (https://neurosymbolic-ai-journal.com/paper/neural-activations-concepts-survey-explaining-concepts-neural-networks

    Two-Level Text Classification Using Hybrid Machine Learning Techniques

    Get PDF
    Nowadays, documents are increasingly being associated with multi-level category hierarchies rather than a flat category scheme. To access these documents in real time, we need fast automatic methods to navigate these hierarchies. Today’s vast data repositories such as the web also contain many broad domains of data which are quite distinct from each other e.g. medicine, education, sports and politics. Each domain constitutes a subspace of the data within which the documents are similar to each other but quite distinct from the documents in another subspace. The data within these domains is frequently further divided into many subcategories. Subspace Learning is a technique popular with non-text domains such as image recognition to increase speed and accuracy. Subspace analysis lends itself naturally to the idea of hybrid classifiers. Each subspace can be processed by a classifier best suited to the characteristics of that particular subspace. Instead of using the complete set of full space feature dimensions, classifier performances can be boosted by using only a subset of the dimensions. This thesis presents a novel hybrid parallel architecture using separate classifiers trained on separate subspaces to improve two-level text classification. The classifier to be used on a particular input and the relevant feature subset to be extracted is determined dynamically by using a novel method based on the maximum significance value. A novel vector representation which enhances the distinction between classes within the subspace is also developed. This novel system, the Hybrid Parallel Classifier, was compared against the baselines of several single classifiers such as the Multilayer Perceptron and was found to be faster and have higher two-level classification accuracies. The improvement in performance achieved was even higher when dealing with more complex category hierarchies

    Two-level text classification using hybrid machine learning techniques

    Get PDF
    Nowadays, documents are increasingly being associated with multi-level category hierarchies rather than a flat category scheme. To access these documents in real time, we need fast automatic methods to navigate these hierarchies. Today’s vast data repositories such as the web also contain many broad domains of data which are quite distinct from each other e.g. medicine, education, sports and politics. Each domain constitutes a subspace of the data within which the documents are similar to each other but quite distinct from the documents in another subspace. The data within these domains is frequently further divided into many subcategories. Subspace Learning is a technique popular with non-text domains such as image recognition to increase speed and accuracy. Subspace analysis lends itself naturally to the idea of hybrid classifiers. Each subspace can be processed by a classifier best suited to the characteristics of that particular subspace. Instead of using the complete set of full space feature dimensions, classifier performances can be boosted by using only a subset of the dimensions. This thesis presents a novel hybrid parallel architecture using separate classifiers trained on separate subspaces to improve two-level text classification. The classifier to be used on a particular input and the relevant feature subset to be extracted is determined dynamically by using a novel method based on the maximum significance value. A novel vector representation which enhances the distinction between classes within the subspace is also developed. This novel system, the Hybrid Parallel Classifier, was compared against the baselines of several single classifiers such as the Multilayer Perceptron and was found to be faster and have higher two-level classification accuracies. The improvement in performance achieved was even higher when dealing with more complex category hierarchies.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Hybrid Neural Plausibility Networks for News Agents

    No full text
    This paper describes a learning news agent HyNeT which uses hybrid neural network techniques for classifying news titles as they appear on an internet newswire. Recurrent plausibility networks with local memory are developed and examined for learning robust text routing. HyNeT is described for the first time in this paper. We show that a careful hybrid integration of techniques from neural network architectures, learning and information retrieval can reach consistent recall and precision rates of more than 92% on an 82 000 word corpus; this is demonstrated for 10 000 unknown news titles from the Reuters newswire. This new synthesis of neural networks, learning and information retrieval techniques allows us to scale up to a real-world task and demonstrates a lot of potential for hybrid plausibility networks for semantic text routing agents on the internet. Introduction In the last decade, a lot of work on neural networks in artificial intelligence has focused on fundam..
    corecore