4,062 research outputs found

    Simulation of a Petri net-based Model of the Terpenoid Biosynthesis Pathway

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The development and simulation of dynamic models of terpenoid biosynthesis has yielded a systems perspective that provides new insights into how the structure of this biochemical pathway affects compound synthesis. These insights may eventually help identify reactions that could be experimentally manipulated to amplify terpenoid production. In this study, a dynamic model of the terpenoid biosynthesis pathway was constructed based on the Hybrid Functional Petri Net (HFPN) technique. This technique is a fusion of three other extended Petri net techniques, namely Hybrid Petri Net (HPN), Dynamic Petri Net (HDN) and Functional Petri Net (FPN).</p> <p>Results</p> <p>The biological data needed to construct the terpenoid metabolic model were gathered from the literature and from biological databases. These data were used as building blocks to create an HFPNe model and to generate parameters that govern the global behaviour of the model. The dynamic model was simulated and validated against known experimental data obtained from extensive literature searches. The model successfully simulated metabolite concentration changes over time (pt) and the observations correlated with known data. Interactions between the intermediates that affect the production of terpenes could be observed through the introduction of inhibitors that established feedback loops within and crosstalk between the pathways.</p> <p>Conclusions</p> <p>Although this metabolic model is only preliminary, it will provide a platform for analysing various high-throughput data, and it should lead to a more holistic understanding of terpenoid biosynthesis.</p

    Multi-level dynamic modeling in biological systems : application of hybrid Petri nets to network simulation

    Get PDF
    The recent progress in the high-throughput experimental technologies allows the reconstruction of many biological networks and to evaluate changes in proteins, genes and metabolites levels in different conditions. On the other hand, computational models, when complemented with regulatory information, can be used to predict the phenotype of an organism under different genetic and environmental conditions. These computational methods can be used for example to identify molecular targets capable of inactivating a bacterium and to understand its virulence factors. This work proposes a hybrid metabolic-regulatory Petri net approach that is based on the combination of approximate enzyme-kinetic rate laws and Petri nets. A prototypic network model is used as a test-case to illustrate the application of these concepts in Systems Biology.This work was partially supported by post-doctoral grant by Fundacao para a Ciencia e a Tecnologia (FCT) (SFRH/BPD/80784/2011), project PneumoSyS - A Systems Biology approach to the role of pneumococcal carbon metabolism in colonization and invasive disease (FCT contract: PTDC/SAU-MII/100964/2008) and by FCT (INESC-ID multiannual funding) through the PIDDAC program funds

    Time-dependent structural transformation analysis to high-level Petri net model with active state transition diagram

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>With an accumulation of <it>in silico </it>data obtained by simulating large-scale biological networks, a new interest of research is emerging for elucidating how living organism functions over time in cells.</p> <p>Investigating the dynamic features of current computational models promises a deeper understanding of complex cellular processes. This leads us to develop a method that utilizes structural properties of the model over all simulation time steps. Further, user-friendly overviews of dynamic behaviors can be considered to provide a great help in understanding the variations of system mechanisms.</p> <p>Results</p> <p>We propose a novel method for constructing and analyzing a so-called <it>active state transition diagram </it>(ASTD) by using time-course simulation data of a high-level Petri net. Our method includes two new algorithms. The first algorithm extracts a series of subnets (called <it>temporal subnets</it>) reflecting biological components contributing to the dynamics, while retaining positive mathematical qualities. The second one creates an ASTD composed of unique temporal subnets. ASTD provides users with concise information allowing them to grasp and trace how a key regulatory subnet and/or a network changes with time. The applicability of our method is demonstrated by the analysis of the underlying model for circadian rhythms in <it>Drosophila</it>.</p> <p>Conclusions</p> <p>Building ASTD is a useful means to convert a hybrid model dealing with discrete, continuous and more complicated events to finite time-dependent states. Based on ASTD, various analytical approaches can be applied to obtain new insights into not only systematic mechanisms but also dynamics.</p

    Modeling formalisms in systems biology

    Get PDF
    Systems Biology has taken advantage of computational tools and high-throughput experimental data to model several biological processes. These include signaling, gene regulatory, and metabolic networks. However, most of these models are specific to each kind of network. Their interconnection demands a whole-cell modeling framework for a complete understanding of cellular systems. We describe the features required by an integrated framework for modeling, analyzing and simulating biological processes, and review several modeling formalisms that have been used in Systems Biology including Boolean networks, Bayesian networks, Petri nets, process algebras, constraint-based models, differential equations, rule-based models, interacting state machines, cellular automata, and agent-based models. We compare the features provided by different formalisms, and discuss recent approaches in the integration of these formalisms, as well as possible directions for the future.Research supported by grants SFRH/BD/35215/2007 and SFRH/BD/25506/2005 from the Fundacao para a Ciencia e a Tecnologia (FCT) and the MIT-Portugal Program through the project "Bridging Systems and Synthetic Biology for the development of improved microbial cell factories" (MIT-Pt/BS-BB/0082/2008)

    A critical review on modelling formalisms and simulation tools in computational biosystems

    Get PDF
    Integration of different kinds of biological processes is an ultimate goal for whole-cell modelling. We briefly review modelling formalisms that have been used in Systems Biology and identify the criteria that must be addressed by an integrating framework capable of modelling, analysing and simulating different biological networks. Aware that no formalism can fit all purposes we realize Petri nets as a suitable model for Metabolic Engineering and take a deeper perspective on the role of this formalism as an integrating framework for regulatory and metabolic networks.Research supported by PhD grant SFRH/BD/35215/2007 from the Fundacao para a Ciencia e a Tecnologia (FCT) and the MIT-Portugal program
    corecore