4 research outputs found

    Using Memory Management to Detect and Extract Illegitimate Code for Malware Analysis

    Full text link
    Exploits that successfully attack computers are mostly based on some form of shellcode, i.e., illegitimate code that is injected by the attacker to take control of the system. Detecting and extracting such code is the first step to detailed analysis of malware containing illegitimate code. The amount and sophistication of modern malware calls for automated mechanisms that perform such detection and extraction. In this paper we present a novel generic and fully automatic approach to detect the execution of illegitimate code and extract such code upon detection. The basic idea of the approach is to flag critical memory pages as non-executable and use a modified page fault handler to dump corresponding memory pages. We present an implementation of the approach for the Windows platform called CWXDetector. Evaluations using malicious PDF documents as example show that CWXDetector produces no false positives and has a similarly low false negative rate

    Shadow Honeypots

    Get PDF
    We present Shadow Honeypots, a novel hybrid architecture that combines the best features of honeypots and anomaly detection. At a high level, we use a variety of anomaly detectors to monitor all traffic to a protected network or service. Traffic that is considered anomalous is processed by a "shadow honeypot" to determine the accuracy of the anomaly prediction. The shadow is an instance of the protected software that shares all internal state with a regular ("production") instance of the application, and is instrumented to detect potential attacks. Attacks against the shadow are caught, and any incurred state changes are discarded. Legitimate traffic that was misclassified will be validated by the shadow and will be handled correctly by the system transparently to the end user. The outcome of processing a request by the shadow is used to filter future attack instances and could be used to update the anomaly detector. Our architecture allows system designers to fine-tune systems for performance, since false positives will be filtered by the shadow. We demonstrate the feasibility of our approach in a proof-of-concept implementation of the Shadow Honeypot architecture for the Apache web server and the Mozilla Firefox browser. We show that despite a considerable overhead in the instrumentation of the shadow honeypot (up to 20% for Apache), the overall impact on the system is diminished by the ability to minimize the rate of false-positives

    Detecting and Modeling Polymorphic Shellcode

    Get PDF
    In this thesis, we address the problem of modeling and detecting polymorphic engines shellcode. By polymorphic engines, we mean programs having the ability to transform any piece of malware into many instances consisting of different code but having the same functionality as the original malware. Typically, polymorphic engines work by encrypting the target malware using various encryption techniques and providing a decryption module in order to execute the newly encrypted instance. Moreover, those engines have the ability to mutate their decryption routine making them unique from one instance to another and hard to detect. Our analysis focuses on polymorphic shellcode, which is shellcode that uses a polymorphic engine to mutate while keeping the original function of the code the same. We propose a new concept of signatures, shape signatures, which cope with the highly mutated nature of those engines. Those signatures try to identify the constant part as well as the mutated part of the deciphering routines. This combination is able to cope with the highly mutated nature of those engines in a much more efficient way compared to traditional signatures used in most intrusion detection systems. The second part of the thesis aims at modeling those polymorphic engines by showing that they exhibit commo

    Identifying Code Injection and Reuse Payloads In Memory Error Exploits

    Get PDF
    Today's most widely exploited applications are the web browsers and document readers we use every day. The immediate goal of these attacks is to compromise target systems by executing a snippet of malicious code in the context of the exploited application. Technical tactics used to achieve this can be classified as either code injection - wherein malicious instructions are directly injected into the vulnerable program - or code reuse, where bits of existing program code are pieced together to form malicious logic. In this thesis, I present a new code reuse strategy that bypasses existing and up-and-coming mitigations, and two methods for detecting attacks by identifying the presence of code injection or reuse payloads. Fine-grained address space layout randomization efficiently scrambles program code, limiting one's ability to predict the location of useful instructions to construct a code reuse payload. To expose the inadequacy of this exploit mitigation, a technique for "just-in-time" exploitation is developed. This new technique maps memory on-the-fly and compiles a code reuse payload at runtime to ensure it works in a randomized application. The attack also works in face of all other widely deployed mitigations, as demonstrated with a proof-of-concept attack against Internet Explorer 10 in Windows 8. This motivates the need for detection of such exploits rather than solely relying on prevention. Two new techniques are presented for detecting attacks by identifying the presence of a payload. Code reuse payloads are identified by first taking a memory snapshot of the target application, then statically profiling the memory for chains of code pointers that reuse code to implement malicious logic. Code injection payloads are identified with runtime heuristics by leveraging hardware virtualization for efficient sandboxed execution of all buffers in memory. Employing both detection methods together to scan program memory takes about a second and produces negligible false positives and false negatives provided that the given exploit is functional and triggered in the target application version. Compared to other strategies, such as the use of signatures, this approach requires relatively little effort spent on maintenance over time and is capable of detecting never before seen attacks. Moving forward, one could use these contributions to form the basis of a unique and effective network intrusion detection system (NIDS) to augment existing systems.Doctor of Philosoph
    corecore