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Abstract: We present Shadow Honeypots, a novel hybrid 
architecture that combines the best features of honeypots and 
anomaly detection. At a high level, we use a variety of anomaly 
detectors to monitor all traffic to a protected network or service. 
Traffic that is considered anomalous is processed by a “shadow 
honeypot” to determine the accuracy of the anomaly prediction. 
The shadow is an instance of the protected software that shares 
all internal state with a regular (“production”) instance of the 
application, and is instrumented to detect potential attacks. 
Attacks against the shadow are caught, and any incurred state 
changes are discarded. Legitimate traffic that was misclassified 
will be validated by the shadow and will be handled correctly by 
the system transparently to the end user. The outcome of 
processing a request by the shadow is used to filter future attack 
instances and could be used to update the anomaly detector. Our 
architecture allows system designers to fine-tune systems for 
performance, since false positives will be filtered by the shadow. 
We demonstrate the feasibility of our approach in a proof-of-
concept implementation of the Shadow Honeypot architecture 
for the Apache web server and the Mozilla Firefox browser. We 
show that despite a considerable overhead in the 
instrumentation of the shadow honeypot (up to 20% for 
Apache), the overall impact on the system is diminished by the 
ability to minimize the rate of false-positives. 

Keywords: honeypots, anomaly detection 

1. Introduction 
Due to the increasing level of malicious activity seen on 
today’s Internet, organizations are beginning to deploy 
mechanisms for detecting and responding to new attacks or 
suspicious activity, called Intrusion Prevention Systems 
(IPS). Since current IPSes use rule-based intrusion detection 
systems (IDS) such as Snort [1] to detect attacks, they are 
limited to protecting, for the most part, against already 
known attacks. As a result, new detection mechanisms are 
being developed for use in more powerful reactive-defense 
systems. The two primary such mechanisms are honeypots 
[2], [3], [4], [5], [6], [7] and anomaly detection systems 
(ADS) [8], [9], [10], [11], [12], [13]. In contrast with IDSes, 
honeypots and ADSes offer the possibility of detecting (and 
thus responding to) previously unknown attacks, also 
referred to as zero-day attacks. 

Honeypots and anomaly detection systems offer different 
tradeoffs between accuracy and scope of attacks that can be 

detected, as shown in Figure 1. Honeypots can be heavily 
instrumented to accurately detect attacks, but depend on an 
attacker attempting to exploit a vulnerability against them. 
This makes them good for detecting scanning worms [14], 
[15], [3], but ineffective against manual directed attacks or 
topological and hit-list worms [16], [17]. Furthermore, 
honeypots can typically only be used for server-type 
applications. Anomaly detection systems can theoretically 
detect both types of attacks, but are usually much less 
accurate. Most such systems offer a tradeoff between false 
positive (FP) and false negative (FN) rates. For example, it 
is often possible to tune the system to detect more potential 
attacks, at an increased risk of misclassifying legitimate 
traffic (low FN, high FP); alternatively, it is possible to 
make an anomaly detection system more insensitive to 
attacks, at the risk of missing some real attacks (high FN, 
low FP). Because an ADS-based IPS can adversely affect 
legitimate traffic (e.g., drop a legitimate request), system 
designers often tune the system for low false positive rates, 
potentially misclassifying attacks as legitimate traffic. 

We propose a novel hybrid approach that combines the 
best features of honeypots and anomaly detection, named 
Shadow Honeypots. At a high level, we use a variety of 
anomaly detectors to monitor all traffic to a protected 
network. Traffic that is considered anomalous is processed 
by a shadow honeypot. The shadow version is an instance of 
the protected application (e.g., a web server or client) that 
shares all internal state with a “normal” instance of the 
application, but is instrumented to detect potential attacks. 
Attacks against the shadow honeypot are caught and any 
incurred state changes are discarded. Legitimate traffic that 
was misclassified by the anomaly detector will be validated 
by the shadow honeypot and will be transparently handled 
correctly by the system (i.e., an HTTP request that was 
mistakenly flagged as suspicious will be served correctly). 
Our approach offers several advantages over stand-alone 
ADSes or honeypots: 

 
• First, it allows system designers to tune the anomaly 

detection system for low false negative rates, minimizing 
the risk of misclassifying a real attack as legitimate 
traffic, since any false positives will be weeded out by the 
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shadow honeypot. 
• Second, and in contrast to typical honeypots, our 

approach can defend against attacks that are tailored 
against a specific site with a particular internal state. 
Honeypots may be blind to such attacks, since they are 
not typically mirror images of the protected application. 

• Third, shadow honeypots can also be instantiated in a 
form that is particularly well-suited for protecting 
against client-side attacks, such as those directed against 
web browsers and P2P file-sharing clients. 

• Finally, our system architecture facilitates easy 
integration of additional detection mechanisms. 

 

  
Figure 1. A simple classification of honeypots and anomaly 
detection systems, based on attack detection accuracy and 
scope of detected attacks. Targeted attacks may use lists of 
known (potentially) vulnerable servers, while scan-based 
attacks will target any system that is believed to run a 
vulnerable service. AD systems can detect both types of 
attacks, but with lower accuracy than a specially 
instrumented system (honeypot). However, honeypots are 
blind to targeted attacks, and may not see a scanning attack 
until after it has succeeded against the real server. 

 
We apply the concept of shadow honeypots to a proof-of- 

concept implementation tailored against memory violation 
attacks. Specifically, we developed a tool that allows for 
automatic transformation of existing code into its “shadow 
version.” The resulting code allows for traffic handling to 
happen through the regular or shadow version of the 
application, contingent on input derived from an array of 
anomaly detection sensors. When an attack is detected by 
the shadow version of the code, state changes effected by the 
malicious request are rolled back. Legitimate traffic handled 
by the shadow is processed successfully, albeit at higher 
latency. Note that the shadow may be an entirely separate 
process, possibly running on a different machine (loose 
coupling), or it may be a different thread running in the 
same address space (tight coupling). These two approaches 
reflect different tradeoffs in state-sharing overhead, ease of 
deployment, and transparency to the user. 

In addition to the server-side scenario, we also investigate 
a client-targeting attack-detection scenario, unique to 
shadow honeypots, where we apply the detection heuristics 
to content retrieved by protected clients and feed any 

positives to shadow honeypots for further analysis. Unlike 
traditional honeypots, which are idle whilst waiting for 
active attackers to probe them, this scenario enables the 
detection of passive attacks, where the attacker lures a 
victim user to download malicious data. We use the recent 
libpng vulnerability of Mozilla [18] (which is similar to 
the buffer overflow vulnerability in the Internet Explorer’s 
JPEG-handling logic) to demonstrate the ability of our 
system to protect client-side applications. 

Our shadow honeypot prototype consists of several 
components. At the front-end of our system, we use a high-
performance intrusion-prevention system based on the Intel 
IXP network processor and a set of modified Snort sensors 
running on normal PCs. The network processor is used as a 
smart load-balancer, distributing the workload to the 
sensors. The sensors are responsible for testing the traffic 
against a variety of anomaly detection heuristics, and 
coordinating with the IXP to tag traffic that needs to be 
inspected by shadow honeypots. This design leads to the 
scalability needed in high-end environments such as web 
server farms, as only a fraction of the servers need to incur 
the penalty of providing shadow honeypot functionality. 

In our implementation, we have used a variety of anomaly 
detection techniques, including Abstract Payload Execution 
(APE) [10], the Earlybird algorithm [19], and network-level 
emulation [13]. The feasibility of our approach is 
demonstrated by examining both false-positive and true 
attack scenarios. We show that our system has the capacity 
to process all false positives generated by APE and 
EarlyBird and successfully detect attacks. Furthermore, it 
enhances the robustness of network-level emulation against 
advanced evasion attacks. We also show that when the 
anomaly detection techniques are tuned to increase detection 
accuracy, the resulting additional false positives are still 
within the processing budget of our system. More 
specifically, our benchmarks show that although 
instrumentation is expensive (20-50% overhead), the 
shadow version of the Apache Web server can process 
around 1300 requests per second, while the shadow version 
of the Mozilla Firefox client can process between 1 and 4 
requests per second. At the same time, the front-end and 
anomaly detection algorithms can process a fully-loaded 
Gbit/s link, producing 0:3 to 0:5 false positives per minute 
when tuned for high sensitivity, which is well within the 
processing budget of our shadow honeypot implementation. 

The remainder of this paper is organized as follows. 
Section 2 discusses the shadow honeypot architecture in 
greater detail. We describe our implementation in Section 3, 
and our experimental and performance results in Section 4. 
Some of the limitations of our approach are briefly discussed 
in Section 5. We give an overview of related work in Section 
6, and conclude the paper with a summary of our work and 
plans for future work in Section 7. 

2. Architecture 
The Shadow Honeypot architecture is a systems approach to 
handling network-based attacks, combining filtering, 
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anomaly detection systems, and honeypots in a way that 
exploits the best features of these mechanisms, while 
shielding their limitations. We focus on transactional 
applications, i.e., those that handle a series of discrete 
requests. Our architecture is not limited to server 
applications, but can be used for clientside applications such 
as web browsers and P2P clients. As shown in Figure 2, the 
architecture is composed of three main components: a 
filtering engine, an array of anomaly detection  

  
Figure 2. Shadow Honeypot architecture. 

 
sensors, and the shadow honeypot, which validates the 
predictions of the anomaly detectors. The processing logic of 
the system is shown in Figure 3. 

The filtering component blocks known attacks. Such 
filtering is done based either on payload content [20], [21] 
or on the source of the attack, if it can be identified with 
reasonable confidence (e.g., confirmed traffic bi-
directionality). Effectively, the filtering component short-
circuits the detection heuristics or shadow testing results by 
immediately dropping specific types of requests before any 
further processing is done. 

Traffic passing the first stage is processed by one or more 
anomaly detectors. There are several types of anomaly 
detectors that may be used in our system, including payload 
analysis [9], [19], [22], [10], [13] and network behavior 
[23], [24]. Although we do not impose any particular 
requirements on the AD component of our system, it is 
preferable to tune such detectors towards high sensitivity (at 
the cost of increased false positives). The anomaly detectors, 
in turn, signal to the protected application whether a request 
is potentially dangerous. 

Depending on this prediction by the anomaly detectors, 
the system invokes either the regular instance of the 
application or its shadow. The shadow is an instrumented 
instance of the application that can detect specific types of 
failures and rollback any state changes to a known (or 
presumed) good state, e.g., before the malicious request was 
processed. Because the shadow is (or should be) invoked 
relatively infrequently, we can employ computationally 

expensive instrumentation to detect attacks. The shadow and 
the regular application fully share state to avoid attacks that 
exploit differences between the two; we assume that an 
attacker can only interact with the application through the 
filtering and AD stages, i.e., there are no side-channels. The 
level of instrumentation used in the shadow depends on the 
amount of latency we are willing to impose on suspicious 
traffic (whether truly malicious or misclassified legitimate 
traffic). In our implementation, described in Section 3, we 
focus on memory-violation attacks, but any attack that can 
be determined algorithmically can be  

  
Figure 3. System workflow. 

 
detected and recovered from, at the cost of increased 
complexity and potentially higher latency. 

If the shadow detects an actual attack, we notify the 
filtering component to block further attacks. If no attack is 
detected, we update the prediction models used by the 
anomaly detectors. Thus, our system could in fact self-train 
and fine-tune itself using verifiably bad traffic and known 
mis-predictions, but this aspect of the approach is outside 
the scope of this paper. 

As we mentioned above, shadow honeypots can be 
integrated with servers as well as clients. In this paper, we 
consider tight coupling with both server and client 
applications, where the shadow resides in the same address 
space as the protected application. 

 
• Tightly coupled with server. This is the most practical 

scenario, in which we protect a server by diverting 
suspicious requests to its shadow. The application and 
the honeypot are tightly coupled, mirroring functionality 
and state. We have implemented this configuration with 
the Apache web server, described in Section 3. 

• Tightly coupled with client. Unlike traditional 
honeypots, which remain idle while waiting for active 
attacks, this scenario targets passive attacks, where the 
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attacker lures a victim user to download data containing 
an attack, as with the recent buffer overflow vulnerability 
in Internet Explorer’s JPEG handling [25]. In this 
scenario, the context of an attack is an important 
consideration in replaying the attack in the shadow. It 
may range from data contained in a single packet to an 
entire flow, or even set of flows. Alternatively, it may be 
defined at the application layer. For our testing scenario 
using HTTP, the request/response pair is a convenient 
context. 

 
Tight coupling assumes that the application can be 

modified. The advantage of this configuration is that attacks 
that exploit differences in the state of the shadow vs. the 
application itself become impossible. However, it is also 
possible to deploy shadow honeypots in a loosely coupled 
configuration, where the shadow resides on a different 
system and does not share state with the protected 
application. The advantage of this configuration is that 
management of the shadows can be “outsourced” to a third 
entity. 

Note that the filtering and anomaly detection components 
can also be tightly coupled with the protected application, or 
may be centralized at a natural aggregation point in the 
network topology (e.g., at the firewall). 

Finally, it is worth considering how our system would 
behave against different types of attacks. For most attacks 
we have seen thus far, once the AD component has 
identified an anomaly and the shadow has validated it, the 
filtering component will block all future instances of it from 
getting to the application. However, we cannot depend on 
the filtering component to prevent polymorphic or 
metamorphic [26] attacks. For low-volume events, the cost 
of invoking the shadow for each attack may be acceptable. 
For high-volume events, such as a Slammer-like outbreak, 
the system will detect a large number of correct AD 
predictions (verified by the shadow) in a short period of 
time; should a configurable threshold be exceeded, the 
system can enable filtering at the second stage, based on the 
unverified verdict of the anomaly detectors. Although this 
will cause some legitimate requests to be dropped, this could 
be acceptable for the duration of the incident. Once the 
number of (perceived) attacks seen by the ADS drop beyond 
a threshold, the system can revert to normal operation. 

3. Implementation 

3.1 Filtering and Anomaly Detection 
During the composition of our system, we were faced with 
numerous design issues with respect to performance and 
extensibility. When considering the deployment of the 
shadow honeypot architecture in a high-performance 
environment, such as a Web server farm, where speeds of at 
least 1 Gbit/s are common and we cannot afford to 
misclassify traffic, the choice for off-the-shelf components 
becomes very limited. To the best of our knowledge, current 
solutions, both standalone PCs and network-processor-based 
network intrusion detection systems (NIDSes), are well 

under the 1 Gbit/s mark [27], [28]. 
Faced with these limitations, we considered a distributed 

design, similar in principle to [29], [30]: we use a network 
processor (NP) as a scalable, custom load balancer, and 
implement all detection heuristics on an array of (modified) 
Snort sensors running on standard PCs that are connected to 
the network processor board. We chose not to implement 
any of the detection heuristics on the NP for two reasons. 
First, currently available NPs are designed primarily for 
simple forwarding and lack the processing capacity required 
for speeds in excess of 1 Gbit/s. Second, they remain harder 
to program and debug than standard general purpose 
processors. For our implementation, we used the IXP1200 
network processor. A high-level view of our implementation 
is shown in Figure 4. 

  
Figure 4. High-level diagram of prototype shadow 

honeypot implementation. 
 
A primary function of the anomaly detection sensor is the 

ability to divert potentially malicious requests to the shadow 
honeypot. For web servers in particular, a reasonable 
definition of the attack context is the HTTP request. For this 
purpose, the sensor must construct a request, run the 
detection heuristics, and forward the request depending on 
the outcome. This processing must be performed at the 
HTTP level thus an HTTP proxy-like function is needed. We 
implemented the anomaly detection sensors for the tightly-
coupled shadow server case by augmenting an HTTP proxy 
with ability to apply the APE detection heuristic on 
incoming requests and route them according to its outcome. 

For the shadow client scenario, we use an alternative 
solution based on passive monitoring. Employing the proxy 
approach in this situation would be prohibitively expensive, 
in terms of latency, since we only require detection 
capabilities. For this scenario, we reconstruct the TCP 
streams of HTTP connections and decode the HTTP protocol 
to extract suspicious objects. 

As part of our proof-of-concept implementation we have 
used three anomaly detection heuristics: payload sifting, 
abstract payload execution, and network-level emulation. 
Payload sifting as developed in [19] derives fingerprints of 
rapidly spreading worms by identifying popular substrings 
in network traffic. It is a prime example of an anomaly 
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detection based system that is able to detect novel attacks at 
the expense of false positives. However, if used in isolation 
(e.g., outside our shadow honeypot environment) by the time 
it has reliably detected a worm epidemic, it is very likely 
that many systems would have already been compromised. 
This may reduce its usage potential in the tightly-coupled 
server protection scenario without external help. 
Nevertheless, if fingerprints generated by a distributed 
payload sifting system are disseminated to interested parties 
that run shadow honeypots locally, matching traffic against 
such fingerprints can be of use as a detection heuristic in the 
shadow honeypot system. Of further interest is the ability to 
use this technique in the loosely-coupled shadow server 
scenario, although we do not further consider this scenario 
here. 

The second heuristic we have implemented is buffer 
overflow detection via abstract payload execution (APE), as 
proposed in [10]. The heuristic detects buffer overflow 
attacks by searching for sufficiently long sequences of valid 
instructions in network traffic. Long sequences of valid 
instructions can appear in non-malicious data, and this is 
where the shadow honeypot fits in. Such detection 
mechanisms are particularly attractive because they are 
applied to individual attacks and will trigger detection upon 
encountering the first instance of an attack, unlike many 
anomaly detection mechanisms that must witness multiple 
attacks before flagging them as anomalous. 

Finally, as discussed in Section 3.3, the third heuristic we 
use is network-level emulation [13], [31], a detection 
method that scans network traffic streams for the presence 
of previously unknown polymorphic shellcode. The 
approach is based on the execution of all potential malicious 
instruction sequences found in the inspected traffic on a 
NIDS-embedded CPU emulator. Based on a behavioral 
heuristic, the detection algorithm can discriminate between 
the execution of benign and malicious code. 

3.2 Shadow Honeypot Creation 
The creation of a shadow honeypot is based on a code-
transformation tool that takes as input the original 
application source code and “weaves” into it the shadow 
honeypot code. In this paper, we focus on memory-violation 
errors and show source-code transformations that detect 
buffer overflows, although other types of failures can be 
caught (e.g., input that causes illegal memory dereferences) 
with the appropriate instrumentation, but at the cost of 
higher complexity and larger performance bottleneck. For 
the code transformations we use TXL [32], a hybrid 
functional and rule-based language which is well-suited for 
performing source-to-source transformation and for rapidly 
prototyping new languages and language processors. The 
grammar responsible for parsing the source input is 
specified in a notation similar to Extended Backus-Naur 
(BNF). In our prototype, called DYBOC, we use TXL for C-
to-C transformations with the GCC C front-end. 

  
Figure 5. Example of pmalloc()-based memory 

allocation: the trailer and edge regions (above and below the 
write-protected pages) indicate “waste” memory. This is 
needed to ensure that mprotect() is applied on complete 
memory pages. 

  

  
Figure 6. Transforming a function to its shadow-

supporting version. The shadow_enable() macro 
simply checks the status of a shared-memory variable 
(controlled by the anomaly detection system) on whether the 
shadow honeypot should be executing instead of the regular 
code. 

 
The instrumentation itself is conceptually 

straightforward: we move all static buffers to the heap by 
dynamically allocating the buffer upon entering the function 
in which it was previously declared; we de-allocate these 
buffers upon exiting the function, whether implicitly (by 
reaching the end of the function body) or explicitly (through 
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a return statement). We take care to properly handle the 
sizeof construct, a fairly straightforward task with TXL. 
Pointer aliasing is not a problem, since we instrument the 
allocated memory regions; any illegal accesses to these will 
be caught. 

For memory allocation, we use our own version of 
malloc(), called pmalloc(), that allocates two 
additional zero-filled, write-protected pages that bracket the 
requested buffer, as shown in Figure 5. The guard pages are 
mmap()’ed from /dev/zero as read-only. As mmap() 
operates at memory page granularity, every memory request 
is rounded up to the nearest page. The pointer that is 
returned by pmalloc() can be adjusted to immediately 
catch any buffer overflow or underflow depending on where 
attention is focused. This functionality is similar to that 
offered by the ElectricFence memory-debugging library, the 
difference being that pmalloc() catches both buffer 
overflow and underflow attacks. Because we mmap() pages 
from /dev/zero, we do not waste physical memory for 
the guards (just page-table entries). Memory is wasted, 
however, for each allocated buffer, since we allocate to the 
next closest page. While this can lead to considerable 
memory waste, we note that this is only incurred when 
executing in shadow mode, and in practice has proven easily 
manageable. 

Figure 6 shows an example of such a translation. Buffers 
that are already allocated via malloc() are simply 
switched to pmalloc(). This is achieved by examining 
declarations in the source and transforming them to pointers 
where the size is allocated with a malloc() function call. 
Furthermore, we adjust the C grammar to free the variables 
before the function returns. After making changes to the 
standard ANSI C grammar that allow entries such as 
malloc() to be inserted between declarations and 
statements, the transformation step is trivial. For single-
threaded, non-reentrant code, it is possible to only use 
pmalloc() once for each previously-static buffer. 
Generally, however, this allocation needs to be done each 
time the function is invoked. 

Any overflow (or underflow) on a buffer allocated via 
pmalloc() will cause the process to receive a 
Segmentation Violation (SEGV) signal, which is caught by 
a signal handler we have added to the source code in 
main(). The signal handler simply notifies the operating 
system to abort all state changes made by the process while 
processing this request. To do this, we added a new system 
call to the operating system, transaction(). This is 
conditionally (as directed by the shadow enable() macro) 
invoked at three locations in the code: 

 
• Inside the main processing loop, prior to the beginning 

of handling of a new request, to indicate to the operating 
system that a new transaction has begun. The operating 
system makes a backup of all memory page permissions, 
and marks all heap memory pages as read-only. As the 
process executes and modifies these pages, the operating 
system maintains a copy of the original page and 

allocates a new page (which is given the permissions the 
original page had from the backup) for the process to 
use, in exactly the same way copy-on-write works in 
modern operating system. Both copies of the page are 
maintained until transaction() is called again, as 
we describe below. This call to transaction() must 
be placed manually by the programmer or system 
designer. 

• Inside the main processing loop, immediately after the 
end of handling a request, to indicate to the operating 
system that a transaction has successfully completed. The 
operating system then discards all original copies of 
memory pages that have been modified during 
processing this request. This call to transaction() 
must also be placed manually. 

• Inside the signal handler that is installed automatically 
by our tool, to indicate to the operating system that an 
exception (attack) has been detected. The operating 
system then discards all modified memory pages by 
restoring the original pages. 

 
Although we have not implemented this, a similar 

mechanism can be built around the filesystem by using a 
private copy of the buffer cache for the process executing in 
shadow mode. The only difficulty arises when the process 
must itself communicate with another process while 
servicing a request; unless the second process is also 
included in the transaction definition (which may be 
impossible, if it is a remote process on another system), 
overall system state may change without the ability to roll it 
back. For example, this may happen when a web server 
communicates with a remote back-end database. Our system 
does not currently address this, i.e., we assume that any such 
state changes are benign or irrelevant (e.g., a DNS query). 
Specifically for the case of a back-end database, these 
inherently support the concept of a transaction rollback, so it 
is possible to undo any changes. 

The signal handler may also notify external logic to 
indicate that an attack associated with a particular input 
from a specific source has been detected. The external logic 
may then instantiate a filter, either based on the network 
source of the request or the contents of the payload [20]. 

3.3 Using Feedback to Improve Network-level 
Detection 

A significant benefit stemming from the combination of 
network-level anomaly detection techniques with host-level 
attack prevention mechanisms is that it allows for increasing 
the detection accuracy of current network-level detectors. 
This improvement may go beyond simply increasing the 
sensitivity of the detector and then mitigating the extra false 
positives through the shadow honeypot. In certain cases, it is 
also possible to enhance the robustness of the anomaly 
detection algorithm itself against evasion attacks. In this 
section, we describe how shadow honeypots enhance the 
detection ability of network-level emulation, one of the 
detection techniques that we have used in our 
implementation. 
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Network-level emulation [13], [31] is a passive network 
monitoring approach for the detection of previously 
unknown polymorphic shellcode. The approach relies on a 
NIDSembedded CPU emulator that executes every potential 
instruction sequence in the inspected traffic, aiming to 
identify the execution behavior of polymorphic shellcode. 
The principle behind network-level emulation is that the 
machine code interpretation of arbitrary data results to 
random code, which, when it is attempted to run on an 
actual CPU, usually crashes soon, e.g., due to the execution 
of an illegal instruction. In contrast, if some network request 
actually contains a polymorphic shellcode, then the 
shellcode runs normally, exhibiting a certain detectable 
behavior. 

Network-level emulation does not rely on any exploit or 
vulnerability specific signatures, which allows the detection 
of previously unknown attacks. Instead, it uses a generic 
heuristic that matches the runtime behavior of polymorphic 
shellcode. At the same time, the actual execution of the 
attack code on a CPU emulator makes the detector robust to 
evasion techniques such as highly obfuscated or self-
modifying code. Furthermore, each input is inspected 
autonomously, which makes the approach effective against 
targeted attacks, while from our experience so far with real-
world deployments, it has not produced any false positives. 

The detector inspects either or both directions of each 
network flow, which may contain malicious requests 
towards vulnerable services, or malicious content served by 
some compromised server towards a vulnerable client. Each 
input is mapped to a random memory location in the virtual 
address space of the emulator, as shown in Figure 7. Since 
the exact position of the shellcode within the input stream is 
not known in advance, the emulator repeats the execution 
multiple times, starting from each and every position of the 
stream. Before the beginning of a new execution, the state of 
the CPU is randomized, while any accidental memory 
modifications in the addresses where the attack vector has 
been mapped to are rolled back after the end of each 
execution. The execution of polymorphic shellcode is 
identified by two key behavioral characteristics: the 
execution of some form of GetPC code, and the occurrence 
of several read operations from the memory addresses of the 
input stream itself, as illustrated in Figure 7. The GetPC 
code is used for finding the absolute address of the injected 
code, which is mandatory for subsequently decrypting the 
encrypted payload, and involves the execution of some 
instruction from the call or fstenv instruction groups. 

 

  
Figure 7. A typical execution of a polymorphic shellcode 

using network-level emulation. 
 
There exist situations in which the execution of benign 

inputs, which are interpreted by the emulator as random 
code, might not stop soon, or even not at all, due to the 
accidental formation of loop structures that may execute for 
a very large number of iterations. To avoid extensive 
performance degradation due to stalling on such seemingly 
“endless” loops, if the number of executed instructions for a 
given input reaches a certain execution threshold, then the 
execution is terminated. 

This unavoidable precaution introduces an opportunity for 
evasion attacks against the detection algorithm through the 
placement of a seemingly endless loop before the decryptor 
code. An attacker could construct a decryptor that spends 
millions of instructions just for reaching the execution 
threshold before revealing any signs of polymorphic 
behavior. We cannot simply skip the execution of such 
loops, since the loop body may perform a crucial 
computation for the subsequent correct execution of the 
decoder, e.g., computing the decryption key. 

Such “endless” loops are a well-known problem in the 
area of dynamic code analysis [33], and we are not aware of 
any effective solution so far. However, employing network-
level emulation as a first-stage detector for shadow 
honeypots mitigates this problem. Without shadow honeypot 
support, the network-level detector does not alert on inputs 
that reach the execution threshold without exhibiting signs 
of malicious behavior, which can potentially result to false 
negatives. In contrast, when coupling network-level 
emulation with shadow honeypots, such undecidable inputs 
can be treated more conservatively by considering them as 
potentially dangerous, and redirecting them to the shadow 
version of the protected service. If an undecidable input 
indeed corresponds to a code injection attack, then it will be 
detected by the shadow honeypot. In Section 4.3 we show, 
through analysis of real network traffic, that the number of 
such streams that are undecidable in reasonable time (and 
thus have to be forwarded to the shadow) is a small, 
manageable fraction of the overall traffic. 

4. Experimental Evaluation 
We have tested our shadow honeypot implementation 
against a number of exploits, including a recent Mozilla 
PNG bug and several Apache-specific exploits. In this 
section, we report on performance benchmarks that illustrate 
the efficacy of our implementation. 

First, we measure the cost of instantiating and operating 
shadow instances of specific services using the Apache web 
server and the Mozilla Firefox web browser. Second, we 
evaluate the filtering and anomaly detection components, 
and determine the throughput of the IXP1200-based load 
balancer as well as the cost of running the detection 
heuristics. Third, we look at the false positive rates and the 
trade-offs associated with detection performance. Based on 
these results, we determine how to tune the anomaly 
detection heuristics in order to increase detection 
performance while not exceeding the budget allotted by the 
shadow services. 
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Figure 8. Apache benchmark results. 

 

4.1 Performance of Shadow Services 
Apache: In this experiment, we determine the workload 
capacity of the shadow honeypot environment, using 
DYBOC on the Apache web server, version 2.0.49. We 
chose Apache due to its popularity and source code 
availability. Basic Apache functionality was tested, omitting 
additional modules. The tests were conducted on a PC with 
a 2GHz Intel P4 processor and 1GB of RAM, running 
Debian Linux (2.6.5- 1 kernel). 

We used ApacheBench [34], a complete benchmarking 
and regression testing suite. Examination of application 
response is preferable to explicit measurements in the case 
of complex systems, as we seek to understand the effect on 
overall system performance. 

Figure 8 illustrates the requests per second that Apache 
can handle. There is a 20.1% overhead for the patched 
version of Apache over the original, which is expected since 
the majority of the patched buffers belong to utility functions 
that are not heavily used. This result is an indication of the 
worst-case analysis, since all the protection flags were 
enabled; although the performance penalty is high, it is not 
outright prohibitive for some applications. For the 
instrumentation of a single buffer and a vulnerable function 
that is invoked once per HTTP transaction, the overhead is 
1.18%. 

Of further interest is the increase in memory requirements 
for the patched version. A naive implementation of 
pmalloc() would require two additional memory pages 
for each transformed buffer. Full transformation of Apache 
translates into 297 buffers that are allocated with 
pmalloc(), adding an overhead of 2.3MB if all of these 
buffers are invoked simultaneously during program 
execution. When protecting malloc()’ed buffers, the 
amount of required memory can skyrocket. 

To avoid this overhead, we use an mmap() based 
allocator. The two guard pages are mmap()’ed write-
protected from /dev/zero, without requiring additional 
physical memory to be allocated. Instead, the overhead of 
our mechanism is 2 page-table entries (PTEs) per allocated 
buffer, plus one file descriptor (for /dev/zero) per 

program. As most modern processors use an MMU cache 
for frequently used PTEs, and since the guard pages are only 
accessed when a fault occurs, we expect their impact on 
performance to be small. 

Mozilla Firefox: For the evaluation of the client case, we 
used the Mozilla Firefox browser. For the initial validation 
tests, we back-ported the recently reported libpng 
vulnerability [18] that enables arbitrary code execution if 
Firefox (or any application using libpng) attempts to 
display a specially crafted PNG image. Interestingly, this 
example mirrors a recent vulnerability of Internet Explorer, 
and JPEG image handling [35], which again enabled 
arbitrary code execution when displaying specially crafted 
images. 

In the tightly-coupled scenario, the protected version of 
the application shares the address space with the unmodified 
version. This is achieved by transforming the original source 
code with our DYBOC tool. Suspicious requests are tagged 
by the ADS so that they are processed by the protected 
version of the code as discussed in Section 3.2. 

For the loosely-coupled case, when the AD component 
marks a request for processing on the shadow honeypot, we 
launch the instrumented version of Firefox to replay the 
request. The browser is configured to use a null X server as 
provided by Xvfb. All requests are handled by a transparent 
proxy that redirects these requests to an internal Web server. 
The Web server then responds with the objects served by the 
original server, as captured in the original session. The 
workload that the shadow honeypot can process in the case 
of Firefox is determined by how many responses per second 
a browser can process and how many different browser 
versions can be checked. 

Our measurements show that a single instance of Firefox 
can handle about one request per second with restarting 
after processing each response. Doing this only after 
detecting a successful attack improves the result to about 
four requests per second. By restarting, we avoid the 
accumulation of various pop-ups and other side-effects. 
Unlike the server scenario, instrumenting the browser does 
not seem to have any significant impact on performance. If 
that was the case, we could have used the rollback 
mechanism discussed previously to reduce the cost of 
launching new instances of the browser. 

We further evaluate the performance implications of fully 
instrumenting a web browser. These observations apply to 
both loosely-coupled and tightly-coupled shadow honeypots. 
Web browsing performance was measured using a Mozilla 
Firefox 1.0 browser to run a benchmark based on the i-
Bench benchmark suite [36]. i-Bench is a comprehensive, 
cross-platform benchmark that tests the performance and 
capability of Web clients. Specifically, we use a variant of 
the benchmark that allows for scrolling of a web page and 
uses cookies to store the load times for each page. Scrolling 
is performed in order to render the whole page, providing a 
pessimistic emulation of a typical attack. The benchmark 
consists of a sequence of 10 web pages containing a mix of 
text and graphics; the benchmark was ran using both the 
scrolling option and the standard page load mechanisms. 
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For the standard page load configuration, the performance 
degradation for instrumentation was 35%. For the scrolling 
configuration, where in addition to the page load time, the 
time taken to scroll through the page is recorded, the 
overhead was 50%. 

 

  
Figure 9. Normalized Mozilla Firefox benchmark results 

using a modified version of i-Bench. 
 

  
Figure 10. Popularity of different Mozilla versions, as 

measured in the logs of the CIS Department Web server at 
the University of Pennsylvania. 

 
The results follow our intuition as more calls to 

malloc() are required to fully render the page. Figure 9 
illustrates the normalized performance results. It should be 
noted that depending on the browser implementation 
(whether the entire page is rendered on page load) 
mechanisms such at the automatic scrolling need to be 
implemented in order to protect against targeted attacks. 
Attackers may hide malicious code in unrendered parts of a 
page or in javascript code activated by user-guided pointer 
movement. 

How many different browser versions would have to be 
checked by the system? Figure 10 presents some statistics 
concerning different versions of Mozilla. The statistics were 
collected over a five-week period from the CIS Department 
web server at the University of Pennsylvania. As evidenced 
by the figure, one can expect to check up to six versions of a 
particular client. We expect that this distribution will be 
more stabilized around final release versions and expect to 

minimize the number of different versions that need to be 
checked based on their popularity. 

4.2 Filtering and Anomaly Detection 
IXP1200-based firewall/load-balancer: We first determine 
the performance of the IXP1200-based firewall/load 
balancer. The IXP1200 evaluation board we use has two 
Gigabit Ethernet interfaces and eight Fast Ethernet 
interfaces. The Gigabit Ethernet interfaces are used to 
connect to the internal and external network and the Fast 
Ethernet interfaces to communicate with the sensors. A set 
of client workstations is used to generate traffic through the 
firewall. The firewall forwards traffic to the sensors for 
processing and the sensors determine if the traffic should be 
dropped, redirected to the shadow honeypot, or forwarded to 
the internal network. 

Previous studies [37] have reported forwarding rates of at 
least 1600 Mbit/s for the IXP1200, when used as a simple 
forwarder/router, which is sufficient to saturate a Gigabit 
Ethernet interface. Our measurements show that despite the 
added cost of load balancing, filtering, and coordinating 
with the sensors, the firewall can still handle the Gigabit 
interface at line rate. 

 

  
Figure 11. Utilization(%) of the IXP1200 Microengines, 

for forwarding-only (FWD), load-balancing-only (LB), both 
(LB+FWD), and full implementation (FULL), in stress-tests 
with 800 Mbit/s worst-case 64-byte-packet traffic. 

 
To gain insight into the actual overhead of our 

implementation, we carry out a second experiment using 
Intel’s cycle-accurate IXP1200 simulator. We assume a 
clock frequency of 232 MHz for the IXP1200, and an IX bus 
configured to be 64- bit wide with a clock frequency of 104 
MHz. In the simulated environment, we obtain detailed 
utilization measurements for the microengines of the 
IXP1200. The results are shown in Figure 11. The results 
show that even at line rate with worst-case traffic, the 
implementation is quite efficient as the microengines 
operate at 50.9%-71.5% of their processing capacity. 

PC-based sensor performance: In this experiment, we 
measure the throughput of the PC-based sensors that 
cooperate with the IXP1200 for analyzing traffic and 
performing anomaly detection. We use a 2.66 GHz Pentium 
IV Xeon processor with hyper-threading disabled. The PC 
has 512 Mbytes of DDR DRAM at 266 MHz. The PCI bus is 
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64- bit wide clocked at 66 MHz. The host operating system 
is Linux (kernel version 2.4.22, Red-Hat 9.0). 

We use LAN traces to stress-test a single sensor running a 
modified version of Snort that, in addition to basic signature 
matching, provides the hooks needed to coordinate with the 
IXP1200 as well as the APE and payload sifting heuristics. 
We replay the traces from a remote system through the 
IXP1200 at different rates to determine the maximum loss-
free rate (MLFR) of the sensor. For the purpose of this 
experiment, we connected a sensor to the second Gigabit 
Ethernet interface of the IXP1200 board. 

Table 1: Sensor throughput for different detection 
mechanisms. 

Detection Method Throughput/Sensor 

Content Matching 225 Mbit/s 
APE 190 Mbit/s 

Payload Sifting 268 Mbit/s 
 

The measured throughput of the sensor for signature 
matching using APE and Earlybird is shown in Table 1. The 
throughput per sensor ranges between 190 Mbit/s (APE) and 
268 Mbit/s (payload sifting), while standard signature 
matching can be performed at 225 Mbit/s. This means that 
we need at least 4-5 sensors behind the IXP1200 for each of 
these mechanisms. Note, however, that these results are 
rather conservative and based on unoptimized code, and 
thus only serve the purpose of providing a ballpark figure on 
the cost of anomaly detection. 

False positive vs. detection rate trade-offs: We determine 
the workload that is generated by the AD heuristics, by 
measuring the false positive rate. We also consider the 
trade-off between false positives and detection rate, to 
demonstrate how the AD heuristics could be tuned to 
increase detection rate in our shadow honeypot 
environment. We use the payload sifting implementation 
from [38], and the APE algorithm from [10]. The APE 
experiment corresponds to a scenario with a tightly-coupled 
shadow server, while the payload sifting experiment 
examines a loosely-coupled shadow honeypot scenario that 
can be used for worm detection. 

We run the modified Snort sensor implementing APE and 
payload sifting on packet-level traces captured on an 
enterprise LAN with roughly 150 hosts. Furthermore, the 
traces contain several instances of the Welchia worm. APE 
was applied on the URIs contained in roughly one-billion 
HTTP requests gathered by monitoring the same LAN. 

Figure 12 demonstrates the effects of varying the distinct 
destinations threshold of the content sifting AD on the false 
positives (measured in requests to the shadow services per 
minute) and the (Welchia worm) detection delay (measured 
in ratio of hosts in the monitored LAN infected by the time 
of the detection). 

 

  
Figure 12. False positives for payload sifting. 

 
Increasing the threshold means more attack instances are 

required for triggering detection, and therefore increases the 
detection delay and reduces the false positives. It is evident 
that to achieve a zero false positives rate without shadow 
honeypots we must operate the system with parameters that 
yield a suboptimal detection delay. The detection rate for 
APE is the minimum sled length that it can detect and 
depends on the sampling factor and the MEL parameter (the 
number of valid instructions that trigger detection). A high 
MEL value means less false positives due to random valid 
sequences but also makes the heuristic blind to sleds of 
smaller lengths. 

  
Figure 13. False positives for APE. 

 
Figure 13 shows the effects of MEL threshold on the false 

positives. APE can be used in a tightly coupled scenario, 
where the suspect requests are redirected to the 
instrumented server instances. The false positives (measured 
in requests to the shadow services per minute by each of the 
normal services under maximum load) can be handled easily 
by a shadow honeypot. APE alone has false positives for the 
entire range of acceptable operational parameters; it is the 
combination with shadow honeypots that removes the 
problem. 

4.3 Fine-tuning Network-level Emulation 
In this scheme, the redirection criterion is whether a 

given input reaches the CPU execution threshold of the 
network-level detector. Since most of the time the system 
will not be under attack, and thus the inspected inputs will 
be benign, an issue that we should take into account is how 
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often a benign inspected input may look “suspicious” and 
causes a redirection to the shadow honeypot. If the fraction 
of such undecidable inputs is large, then the shadow server 
may be overloaded with a higher request rate than it can 
normally handle. To evaluate this effect, we used full 
payload traces of real network traffic captured at ICS-
FORTH and the University of Crete. The set of traces 
contains more than 2.5 million user requests to ports 80, 
445, and 139, which are related to the most exploited 
vulnerabilities. 

 

  
Figure 14. Percentage of benign network streams 

reaching the execution threshold of the network-level 
detector. 

 
Figure 14 shows the percentage of streams with at least 

one instruction sequence that, when executed on the CPU 
emulator of network-level detector, reached the given 
execution threshold. As the execution threshold increases, 
the number of streams that reach it decreases. This effect 
occurs only for low threshold values, due to large code 
blocks with no branch instructions that are executed 
linearly. For example, the execution of linear code blocks 
with more than 256 but less than 512 valid instructions is 
terminated before reaching the end when using a threshold 
of 256 instructions, but completes correctly with a threshold 
of 512 instructions. However, the occurrence probability of 
such blocks is reversely proportional to their length, due to 
the illegal or privileged instructions that accidentally occur 
in random code. Thus, the percentage of streams that reach 
the execution threshold stabilizes beyond the value of 2048. 
After this value, the execution threshold is reached solely 
due to instruction sequences with “endless” loops, which 
usually require a prohibitive number of instructions for the 
slow CPU emulator in order to complete. 

Fortunately, for an execution threshold above 2048 
instructions, which allows for accurate polymorphic 
shellcode detection with a decent operational throughput 
[13], the fraction of streams that reach the execution 
threshold is only around 4% for port 445, 2.6% for port 139, 
and 0.1% for port 80. Binary traffic (ports 445 and 139) is 
clearly more likely to result to an instruction sequence that 
reaches the execution threshold in contrast to the mostly 
ASCII traffic of port 80. In any case, even in the worst case 
of binary-only traffic, the percentage of benign streams that 
reach the execution threshold is very small, so the extra 

overhead incurred to the shadow server is modest. 

5. Limitations 
There are two limitations of the shadow honeypot design 
presented in this paper that we are aware of. The 
effectiveness of the rollback mechanism depends on the 
proper placement of calls to transaction() for 
committing state changes, and the latency of the detector. 
The detector used in this paper can instantly detect attempts 
to overwrite a buffer, and therefore the system cannot be 
corrupted. Other detectors, however, may have higher 
latency, and the placement of commit calls is critical to 
recovering from the attack. Depending on the detector 
latency and how it relates to the cost of implementing 
rollback, one may have to consider different approaches. 
The trade-offs involved in designing such mechanisms are 
thoroughly examined in the fault-tolerance literature (c.f. 
[39]). 

Furthermore, the loosely coupled client shadow honeypot 
is limited to protecting against relatively static attacks. The 
honeypot cannot effectively emulate user behavior that may 
be involved in triggering the attack, for example, through 
DHTML or Javascript. The loosely coupled version is also 
weak against attacks that depend on local system state on 
the user’s host that is difficult to replicate. This is not a 
problem with tightly coupled shadows, because we 
accurately mirror the state of the real system. In some cases, 
it may be possible to mirror state on loosely coupled 
shadows as well, but we have not considered this case in the 
experiments presented in this paper. 

6. Related Work 
Much of the work in automated attack reaction has focused 
on the problem of network worms, which has taken truly 
epidemic dimensions (pun intended). For example, the 
system described in [24] detects worms by monitoring 
probes to unassigned IP addresses (“dark space”) or inactive 
ports and computing statistics on scan traffic, such as the 
number of source/destination addresses and the volume of 
the captured traffic. By measuring the increase on the 
number of source addresses seen in a unit of time, it is 
possible to infer the existence of a new worm when as little 
as 4% of the vulnerable machines have been infected. A 
similar approach for isolating infected nodes inside an 
enterprise network [40] is taken in [23], where it was shown 
that as little as four probes may be sufficient in detecting a 
new port-scanning worm. 

Smirnov and Chiueh [41] describe an approximating 
algorithm for quickly detecting scanning activity that can be 
efficiently implemented in hardware. Newsome et al. [42] 
describe a combination of reverse sequential hypothesis 
testing and credit-based connection throttling to quickly 
detect and quarantine local infected hosts. These systems are 
effective only against scanning worms (not topological, or 
“hit-list” worms), and rely on the assumption that most 
scans will result in non-connections. As such, they are 
susceptible to false positives, either accidentally (e.g., when 



 (IJCNS) International Journal of Computer and Network Security,  
Vol. 2, No. 9, September 2010 

12

a host is joining a peer-to-peer network such as Gnutella, or 
during a temporary network outage) or on purpose (e.g., a 
malicious web page with many links to images in 
random/notused IP addresses). Furthermore, it may be 
possible for several instances of a worm to collaborate in 
providing the illusion of several successful connections, or 
to use a list of known repliers to blind the anomaly detector. 
Another algorithm for finding fast-spreading worms using 
2-level filtering based on sampling from the set of distinct 
source-destination pairs is described in [43]. 

Wu et al. [22] describe an algorithm for correlating 
packet payloads from different traffic flows, towards 
deriving a worm signature that can then be filtered [44]. 
The technique is promising, although further improvements 
are required to allow it to operate in real time. Earlybird 
[19] presents a more practical algorithm for doing payload 
sifting, and correlates these with a range of unique sources 
generating infections and destinations being targeted. 
However, polymorphic and metamorphic worms [26] remain 
a challenge; Spinelis [45] shows that it is an NP-hard 
problem. Vigna et al. [46] discuss a method for testing 
detection signatures against mutations of known 
vulnerabilities to determine the quality of the detection 
model and mechanism. Polygraph [47] attempts to detect 
polymorphic exploits by identifying common invariants 
among the various attack instances, such as return 
addresses, protocol framing and poor obfuscation. 

Toth and Kruegel [10] propose to detect buffer overflow 
payloads (including previously unseen ones) by treating 
inputs received over the network as code fragments. They 
use restricted symbolic execution to show that legitimate 
requests will appear to contain relatively short sequences of 
valid x86 instruction opcodes, compared to attacks that will 
contain long sequences. They integrate this mechanism into 
the Apache web server, resulting in a small performance 
degradation. STRIDE [48] is a similar system that seeks to 
detect polymorphic NOP-sleds in buffer overflow exploits. 
[49] describes a hybrid polymorphic-code detection engine 
that combines several heuristics, including NOP-sled 
detector and abstract payload execution. 

HoneyStat [3] runs sacrificial services inside a virtual 
machine, and monitors memory, disk, and network events to 
detect abnormal behavior. For some classes of attacks (e.g., 
buffer overflows), this can produce highly accurate alerts 
with relatively few false positives, and can detect zero-day 
worms. Although the system only protects against scanning 
worms, “active honeypot” techniques [4] may be used to 
make it more difficult for an automated attacker to 
differentiate between HoneyStats and real servers. FLIPS 
(Feedback Learning IPS) [50] is a similar hybrid approach 
that incorporates a supervision framework in the presence of 
suspicious traffic. Instruction-set randomization is used to 
isolate attack vectors, which are used to train the anomaly 
detector. The authors of [51] propose to enhance NIDS 
alerts using host-based IDS information. Nemean [52] is an 
architecture for generating semantics-aware signatures, 
which are signatures aware of protocol semantics (as 
opposed to general byte strings). Shield [20] is a mechanism 

for pushing to workstations vulnerability-specific, 
application-aware filters expressed as programs in a simple 
language. 

The Internet Motion Sensor [7] is a distributed blackhole 
monitoring system aimed at measuring, characterizing, and 
tracking Internet-based threats, including worms. [53] 
explores the various options in locating honeypots and 
correlating their findings, and their impact on the speed and 
accuracy in detecting worms and other attacks. [54] shows 
that a distributed worm monitor can detect non-uniform 
scanning worms two to four times as fast as a centralized 
telescope [55], and that knowledge of the vulnerability 
density of the population can further improve detection time. 
However, other recent work has shown that it is relatively 
straightforward for attackers to detect the placement of 
certain types of sensors [56], [57]. Shadow Honeypots [58] 
are one approach to avoiding such mapping by pushing 
honeypot-like functionality at the end hosts. 

The HACQIT architecture [59], [60], [61], [62] uses 
various sensors to detect new types of attacks against secure 
servers, access to which is limited to small numbers of users 
at a time. Any deviation from expected or known behavior 
results in the possibly subverted server to be taken off-line. 
A sandboxed instance of the server is used to conduct “clean 
room” analysis, comparing the outputs from two different 
implementations of the service (in their prototype, the 
Microsoft IIS and Apache web servers were used to provide 
application diversity). Machine-learning techniques are used 
to generalize attack features from observed instances of the 
attack. Content-based filtering is then used, either at the 
firewall or the end host, to block inputs that may have 
resulted in attacks, and the infected servers are restarted. 
Due to the feature-generalization approach, trivial variants 
of the attack will also be caught by the filter. [8] takes a 
roughly similar approach, although filtering is done based 
on port numbers, which can affect service availability. 
Cisco’s Network-Based Application Recognition (NBAR) 
[21] allows routers to block TCP sessions based on the 
presence of specific strings in the TCP stream. This feature 
was used to block CodeRed probes, without affecting regular 
web-server access. Porras et al. [63] argue that hybrid 
defenses using complementary techniques (in their case, 
connection throttling at the domain gateway and a peer-
based coordination mechanism), can be much more effective 
against a wide variety of worms. 

DOMINO [64] is an overlay system for cooperative 
intrusion detection. The system is organized in two layers, 
with a small core of trusted nodes and a larger collection of 
nodes connected to the core. The experimental analysis 
demonstrates that a coordinated approach has the potential 
of providing early warning for large-scale attacks while 
reducing potential false alarms. A similar approach using a 
DHT-based overlay network to automatically correlate all 
relevant information is described in [65]. Malkhi and Reiter 
[66] describe an architecture for an early warning system 
where the participating nodes/routers propagate alarm 
reports towards a centralized site for analysis. The question 
of how to respond to alerts is not addressed, and, similar to 
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DOMINO, the use of a centralized collection and analysis 
facility is weak against worms attacking the early warning 
infrastructure. 

Suh et al. [67], propose a hardware-based solution that 
can be used to thwart control-transfer attacks and restrict 
executable instructions by monitoring “tainted” input data. 
In order to identify “tainted” data, they rely on the operating 
system. If the processor detects the use of this tainted data as 
a jump address or an executed instruction, it raises an 
exception that can be handled by the operating system. The 
authors do not address the issue of recovering program 
execution and suggest the immediate termination of the 
offending process. DIRA [68] is a technique for automatic 
detection, identification and repair of control-hijaking 
attacks. This solution is implemented as a GCC compiler 
extension that transforms a program’s source code adding 
heavy instrumentation so that the resulting program can 
perform these tasks. Unfortunately, the performance 
implications of the system make it unusable as a front line 
defense mechanism. Song and Newsome [69] propose 
dynamic taint analysis for automatic detection of overwrite 
attacks. Tainted data is monitored throughout the program 
execution and modified buffers with tainted information will 
result in protection faults. Once an attack has been 
identified, signatures are generated using automatic 
semantic analysis. The technique is implemented as an 
extension to Valgrind and does not require any 
modifications to the program’s source code but suffers from 
severe performance degradation. One way of minimizing 
this penalty is to make the CPU aware of memory tainting 
[70]. Crandall et al. report on using a taint-based system for 
capturing live attacks in [71]. 

The Safe Execution Environment (SEE) [72] allows users 
to deploy and test untrusted software without fear of 
damaging their system. This is done by creating a virtual 
environment where the software has read access to the real 
data; all writes are local to this virtual environment. The 
user can inspect these changes and decide whether to 
commit them or not. We envision use of this technique for 
unrolling the effects of filesystem changes in our system, as 
part of our future work plans. A similar proposal is 
presented in [73] for executing untrusted Java applets in a 
safe “playground” that is isolated from the user’s 
environment. 

7. Conclusion 
We have described a novel approach to dealing with zeroday 
attacks by combining features found today in honeypots and 
anomaly detection systems. The main advantage of this 
architecture is providing system designers the ability to fine 
tune systems with impunity, since any false positives 
(legitimate traffic) will be filtered by the underlying 
components. We have implemented this approach in an 
architecture called Shadow Honeypots. In this approach, we 
employ an array of anomaly detectors to monitor and 
classify all traffic to a protected network; traffic deemed 
anomalous is processed by a shadow honeypot, a protected 

instrumented instance of the application we are trying to 
protect. Attacks against the shadow honeypot are detected 
and caught before they infect the state of the protected 
application. This enables the system to implement policies 
that trade off between performance and risk, retaining the 
capability to re-evaluate this trade-off effortlessly. 

Our experience so far indicates that despite the 
considerable cost of processing suspicious traffic on our 
Shadow Honeypots and overhead imposed by 
instrumentation, such systems are capable of sustaining the 
overall workload of protecting services such as a Web server 
farm, as well as vulnerable Web browsers. We have also 
demonstrated how the impact on performance can be 
minimized by reducing the rate of false positives and tuning 
the AD heuristics using a feedback loop with the shadow 
honeypot. We believe that shadow honeypots can form the 
foundation of a type of application community. 
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