4 research outputs found

    Hybrid Compositional Reasoning for Reactive Synthesis from Finite-Horizon Specifications

    Full text link
    LTLf synthesis is the automated construction of a reactive system from a high-level description, expressed in LTLf, of its finite-horizon behavior. So far, the conversion of LTLf formulas to deterministic finite-state automata (DFAs) has been identified as the primary bottleneck to the scalabity of synthesis. Recent investigations have also shown that the size of the DFA state space plays a critical role in synthesis as well. Therefore, effective resolution of the bottleneck for synthesis requires the conversion to be time and memory performant, and prevent state-space explosion. Current conversion approaches, however, which are based either on explicit-state representation or symbolic-state representation, fail to address these necessities adequately at scale: Explicit-state approaches generate minimal DFA but are slow due to expensive DFA minimization. Symbolic-state representations can be succinct, but due to the lack of DFA minimization they generate such large state spaces that even their symbolic representations cannot compensate for the blow-up. This work proposes a hybrid representation approach for the conversion. Our approach utilizes both explicit and symbolic representations of the state-space, and effectively leverages their complementary strengths. In doing so, we offer an LTLf to DFA conversion technique that addresses all three necessities, hence resolving the bottleneck. A comprehensive empirical evaluation on conversion and synthesis benchmarks supports the merits of our hybrid approach.Comment: Accepted by AAAI 2020. Tool Lisa for (a). LTLf to DFA conversion, and (b). LTLf synthesis can be found here: https://github.com/vardigroup/lis

    LTLf best-effort synthesis in nondeterministic planning domains

    Get PDF
    We study best-effort strategies (aka plans) in fully observable nondeterministic domains (FOND) for goals expressed in Linear Temporal Logic on Finite Traces (LTLf). The notion of best-effort strategy has been introduced to also deal with the scenario when no agent strategy exists that fulfills the goal against every possible nondeterministic environment reaction. Such strategies fulfill the goal if possible, and do their best to do so otherwise. We present a game-theoretic technique for synthesizing best-effort strategies that exploit the specificity of nondeterministic planning domains. We formally show its correctness and demonstrate its effectiveness experimentally, exhibiting a much greater scalability with respect to a direct best-effort synthesis approach based on re-expressing the planning domain as generic environment specifications

    Hybrid Compositional Reasoning for Reactive Synthesis from Finite-Horizon Specifications

    No full text
    corecore