439 research outputs found

    Hybrid Transceiver Optimization for Multi-Hop Communications

    Full text link
    Multi-hop communication with the aid of large-scale antenna arrays will play a vital role in future emergence communication systems. In this paper, we investigate amplify-and-forward based and multiple-input multiple-output assisted multi-hop communication, in which all nodes employ hybrid transceivers. Moreover, channel errors are taken into account in our hybrid transceiver design. Based on the matrix-monotonic optimization framework, the optimal structures of the robust hybrid transceivers are derived. By utilizing these optimal structures, the optimizations of analog transceivers and digital transceivers can be separated without loss of optimality. This fact greatly simplifies the joint optimization of analog and digital transceivers. Since the optimization of analog transceivers under unit-modulus constraints is non-convex, a projection type algorithm is proposed for analog transceiver optimization to overcome this difficulty. Based on the derived analog transceivers, the optimal digital transceivers can then be derived using matrix-monotonic optimization. Numeral results obtained demonstrate the performance advantages of the proposed hybrid transceiver designs over other existing solutions.Comment: 32 pages, 6 figures. This manuscript has been submitted to IEEE Journal on Selected Areas in Communications (special issue on Multiple Antenna Technologies for Beyond 5G

    Millimeter Wave Cellular Networks: A MAC Layer Perspective

    Full text link
    The millimeter wave (mmWave) frequency band is seen as a key enabler of multi-gigabit wireless access in future cellular networks. In order to overcome the propagation challenges, mmWave systems use a large number of antenna elements both at the base station and at the user equipment, which lead to high directivity gains, fully-directional communications, and possible noise-limited operations. The fundamental differences between mmWave networks and traditional ones challenge the classical design constraints, objectives, and available degrees of freedom. This paper addresses the implications that highly directional communication has on the design of an efficient medium access control (MAC) layer. The paper discusses key MAC layer issues, such as synchronization, random access, handover, channelization, interference management, scheduling, and association. The paper provides an integrated view on MAC layer issues for cellular networks, identifies new challenges and tradeoffs, and provides novel insights and solution approaches.Comment: 21 pages, 9 figures, 2 tables, to appear in IEEE Transactions on Communication

    Millimeter Wave Hybrid Beamforming Systems

    Get PDF

    Power Scaling and Antenna Selection Techniques for Hybrid Beamforming in mmWave Massive MIMO Systems

    Get PDF
    With the advent of massive MIMO and mmWave, Antenna selection is the new frontier in hybrid beamforming employed in 5G base stations. Tele-operators are reworking on the components while upgrading to 5G where the antenna is a last-mile device. The burden on the physical layer not only demands smart and adaptive antennas but also an intelligent antenna selection mechanism to reduce power consumption and improve system capacity while degrading the hardware cost and complexity. This work focuses on reducing the power consumption and finding the optimal number of RF chains for a given millimeter wave massive MIMO system. At first, we investigate the power scaling method for both perfect Channel State Information (CSI) and imperfect CSI where the power is reduced by 1/number of antennas and 1/square root (number of antennas) respectively. We further propose to reduce the power consumption by emphasizing on the subdued resolution of Analog-to-Digital Converters (ADCs) with quantization awareness. The proposed algorithm selects the optimal number of antenna elements based on the resolution of ADCs without compromising on the quality of reception. The performance of the proposed algorithm shows significant improvement when compared with conventional and random antenna selection methods
    corecore