59,438 research outputs found

    Effect of Humic Acid on Adsorption of Polychlorinated Biphenyls onto Organoclay

    Get PDF
    Mitigation of risks stemming from contaminated sediments in freshwater and estuarine environments remains an important challenge to the field of environmental science and engineering. Capping sediments with reactive materials is one approach that has recently been the subject of research and development. This research evaluated the use of organoclay as a sorbent in a reactive cap for in situ remediation of contaminated sediments, and provides an original contribution by presenting the sorption characteristics of individual polychlorinated biphenyls (PCB) congeners in the presence of high concentrations of humic acids typical of sediment porewater environments. Sorption of coplanar and noncoplanar PCBs on three commercially available organoclays was studied in this work. Studies were conducted to evaluate the kinetics of adsorption of PCBs on organoclay and to determine the effect of humic acid on the kinetics of adsorption. Isotherm studies were conducted to determine the adsorption affinity of PCBs for organoclays in the presence and absence of humic acid. Studies showed a 45 to 96% reduction in the sorption affinity for organoclays after preloading with high concentrations of humic acid, depending both on the congener and the composition of organoclay. Desorption of PCBs upon addition of humic acid after PCBs were equilibrated with organoclay was statistically significant, although the magnitude of the effect was much smaller than that observed from preloading of humic acid

    Study of Hydrophobic Domains in Humic Acids

    Get PDF
    Fyzikálně-chemická povaha hydrofobních domén huminových kyselin byla studována z několika hledisek. K objasnění významu fluorescenčních spekter byly vzorky podrobeny sekvenční frakcionaci, která pomohla k částečnému objasnění vlivu vodorozpustných složek, volných a vázaných lipidů na optické vlastnosti huminových kyselin. Výsledky naznačily, že fluorescenční píky tradičně přiřazované superpozici jednotlivých struktur jsou spíše důsledkem agregačních vlastností huminových molekul tvořících vlivem hydrofobního efektu zdánlivě vysoce aromatické struktury. Dále pak bylo zjištěno, že na optických vlastnostech huminových kyselin mají podíl i molekuly, které nemají primárně fluoroforní nebo chromoforní vlastnosti. Tento pohled je v souladu s teorií supramolekulárního uspořádání huminových kyselin. Dále byly studovány agregace, konformační chování a termodynamická stabilita huminových kyselin pomocí metody vysoce rozlišovací ultrazvukové spektroskopie. Bylo prokázáno, že huminové kyseliny mají schopnost agregovat už od velmi nízkých koncentrací (The nature of hydrophobic domains in humic acids was studied from different points of view. To shed light on the meaning of fluorescent spectra, the measured samples underwent the sequential extraction which partially revealed the role of water-soluble components, free and bond lipids in optical properties of humic acids. The results indicated that the fluorescence peaks traditionally attributed to the superposition of individual chemical structures are rather a result of aggregation properties of humic molecules and hydrophobic effect driving aromatic molecules together forming aggregates apparently large molecular weight. Further, it seems that there is a significant influence of non-fluorophores and non-chromophores on the optical properties of humic acids. Results are consistent with the theory on supramolecular structure of humic acids. Next, the aggregation, conformational behaviour and thermodynamic stability of humic acids were studied by high resolution ultrasonic spectroscopy. It was demonstrated that humic molecules are able to interact and form aggregates at very low concentration (

    Mitigation of GHGs Emission From Soils by a Catalyzed In-Situ Photo-Oxidative Polymerization of Soil Organic Matter

    Get PDF
    Agricultural lands under food and bio-energy crops, managed grass and permanent crops including agro-forestry, occupy about 40-50% of the Earth's land surface^1^. In 2005, agriculture accounted for an estimated emission of 5.1 to 6.1 GtCO2-eq/yr (10-12% of total global anthropogenic emissions of greenhouse gases (GHGs))^1^. However, measures to mitigate GHGs emission from agricultural soils are limited to improved cropland practices such as crop rotation, nutrient management, tillage/residue management, agroforestry, and return to natural vegetation^2^. These practices are not only far from substantially reducing GHGs emissions from soils or permanentlystabilizing soil organic matter^1-4^, but are also predicted to hardly match more than amaximum of 25% of the GHGs reductions required by the Kyoto Protocol within 2050^5^.Despite the knowledge that GHGs release from soil largely derives from biochemicaltransformations of plant litter and soil organic matter (SOM)^6-8^, no new and much wished biotechnological measures are adopted so far to augment mitigation^1^. Here we propose an innovative approach to mitigate GHGs emissions from soils based on the insitu photo-polymerization of SOM under biomimetic catalysis. Three Mediterranean soils of different physical and chemical properties were added with a synthetic watersolubleiron-porphyrin, irradiated by solar light, and subjected to 15, and 30 wetting and drying cycles. We found that the in situ catalysed photo-polymerization of SOM increased soil physical aggregation, shifted OC into larger soil aggregates, and reduced CO~2~ released by microbial respiration. Our findings suggest that "green" catalytic technologies can become viable soil management practices to enhance mitigation of GHGs emission from arable soils and contribute to match the expectations of the post-Kyoto Protocol in the agricultural sector

    Stability of salts and complexes of humic acids

    Get PDF
    Základem práce je studium vlivu přítomnosti kovů inkorporovaných do struktury huminových látek při tepelné zátěži za přítomnosti vzdušného kyslíku. Pro tyto účely byla použita lignitická huminová kyselina, u které byl nejprve retitračně-vodivostní metodou stanoven počet vazných míst, tj. karboxylových skupin. Smícháním s roztoky sodných a měďnatých iontů byly získány koncové produkty s různými stupni nasycení zjištěných vazných míst. Pro zhodnocení termooxidační stability byla provedena termogravimetrická analýza a diferenční kompenzační kalorimetrie. Výsledky přinášejí nový pohled na reaktivitu huminové kyseliny s kovovými ionty v kapalné fázi, poukazují na možný vznik „porézní“ struktury sodných humátů a jejich schopnost retence vody.The ground of this work lies in the study of influence of metal ions incorporated onto the structure of humic substances during thermal stress in the presence of air oxygen. For these purposes, lignitic humic acid was used. The amount of binding sites, i.e. carboxylic groups, was determined by retitration-conductometric method. Mixing the humic acid with solutions of sodium and cupric ions gave the final products with different saturation degrees of detected binding sites. For the evaluation of thermooxidative stability, thermogravimetric analysis and differential scanning calorimetry were performed. The results bring new view upon the reactivity of humic acid with metal ions in the liquid state, indicate possible formation of “porous” structure of sodium humates and their water-retention ability.

    Structural changes in lipid-free humic acids during composting of sewage sludge

    Get PDF
    Structural changes in humic acids (HAs), extracted after lipid removal from sewage sludge during composting, were investigated using various chemical methods (elemental analysis, Fourier transform infrared spectroscopy and 13C-nuclear magnetic resonance (NMR) spectroscopy). Compared to non-purified HAs, lipid-free HAs (LFHAs) exhibit higher C and N contents and high absorbance around 1652, 1540 and 1230 cm1, which indicates the intensity of the etherified aromatic structures and nitrogencontaining components. Less absorbance around 2920, 1600, 1414 and 1100 cm1 could be assigned to their low level of aliphatic compounds, mainly those with a carboxyl group. According to 13C-NMR spectroscopy, almost 45% of aliphatic structures are removed by lipid extraction and these correspond mainly to long-chain fatty acids. During composting, significant decomposition of non-substituted alkyl structures and N-containing components occurred, increasing the relative intensity of etherified aromatic structures

    Long-term fate of sewage-sludge derived cadmium in arable soils

    Get PDF
    The focus of this work was to improve knowledge of the long-term fate of cadmium supplied to arable soils by sewage sludge. Emphasis was placed on measured and modelled changes in the solubility and mobility of cadmium, resulting from long-term turnover of both sludge-derived and inherent organic matter of the soil. Measurements were conducted in a long-term sludge supplied field experiment, situated at Ultuna (60°N, 17°E), started in 1956. Furthermore, batch studies on soil samples and modelling exercises in WHAM were performed in order to study the speciation of cadmium in the soil-solution system. A comprehensive model -the SLAM model- was developed to increase the understanding of the influence of soil and sludge adsorption characteristics on cadmium solubility and bioavailability, and the migration rate of cadmium in soil profiles. The long-term sludge supplies had increased the solubility of cadmium, measured in crop cadmium concentration, as an effect of enhanced acidification and increased Cd concentration in the soil. A low Cd migration was measured, attributed to non-equilibrium Cd concentration in percolating water, a high cadmium sorption capacity in the subsoil and root driven Cd circulation in the soil profile. No increased Cd sorption capacity was measured in the sludge supplied soil, despite the almost doubled soil organic matter content. This might be partly attributed to the higher iron oxide and hydroxide concentration measured in the sludge, forming more stable complexes with soil humic compounds compared to cadmium complexes with soil humic compounds. A Monte-Carlo analysis of the SLAM model suggested that the major parameters affecting leaching and crop uptake of cadmium were the cadmium loading and the partitioning coefficient for sludge-derived inorganic material and parameters controlling the effect of pH on sorption. Long-term scenario simulations in SLAM identified critical factors influencing plant cadmium uptake: the cadmium concentration in the sludge, the adsorption capacity of the sludge in relation to the adsorption capacity of native soil and the proportion of the sludge adsorption capacity contributed by the inorganic fraction

    Towards a radiocarbon chronology of the Late-Glacial: Sample selection strategies

    Get PDF
    This paper outlines a dating program designed to test the reproducibility of radiocarbon dates on different materials of Late-Glacial age (plant macrofossils, fossil beetle remains, and the "humic" and "humin" chemical fractions of limnic sediments) using a combination of radiometric (beta counting) and accelerator mass spectrometry (AMS) techniques. The results have implications for the design of sampling strategies and for the development of improved dating protocols, both of which are important if a high-precision C-14 chronology for the Late- Glacial is to be achieved

    Characterization of serine proteinase expression in agaricus bisporus and coprinopsis cinerea by using green fluorescent protein and the A. bisporus SPR1 Promoter

    Get PDF
    The Agaricus bisporus serine proteinase 1 (SPR1) appears to be significant in both mycelial nutrition and senescence of the fruiting body. We report on the construction of an SPR promoter::green fluorescent protein (GFP) fusion cassette, pGreen_hph1_SPR_GFP, for the investigation of temporal and developmental expression of SPR1 in homobasidiomycetes and to determine how expression is linked to physiological and environmental stimuli. Monitoring of A. bisporus pGreen_hph1_SPR_GFP transformants on media rich in ammonia or containing different nitrogen sources demonstrated that SPR1 is produced in response to available nitrogen. In A. bisporus fruiting bodies, GFP activity was localized to the stipe of postharvest senescing sporophores. pGreen_hph1_SPR_GFP was also transformed into the model basidiomycete Coprinopsis cinerea. Endogenous C. cinerea proteinase activity was profiled during liquid culture and fruiting body development. Maximum activity was observed in the mature cap, while activity dropped during autolysis. Analysis of the C. cinerea genome revealed seven genes showing significant homology to the A. bisporus SPR1 and SPR2 genes. These genes contain the aspartic acid, histidine, and serine residues common to serine proteinases. Analysis of the promoter regions revealed at least one CreA and several AreA regulatory motifs in all sequences. Fruiting was induced in C. cinerea dikaryons, and fluorescence was determined in different developmental stages. GFP expression was observed throughout the life cycle, demonstrating that serine proteinase can be active in all stages of C. cinerea fruiting body development. Serine proteinase expression (GFP fluorescence) was most concentrated during development of young tissue, which may be indicative of high protein turnover during cell differentiatio

    Evaluation of Activated Carbon as a Reactive Cap Sorbent for Sequestration of PCBs in Presence of Humic Acid

    Get PDF
    This study investigated the interferences caused by high humic acid concentrations on the adsorption of coplanar and noncoplanar polychlorinated biphenyls (PCBs) on coconut shell activated carbon. In particular, the research focuses on the application of activated carbon as a reactive cap for contaminated sediment sites, a possible intervention to reduce contaminant flux through pore water, and to organisms in aquatic environments. Kinetic and equilibrium studies were conducted using activated carbon as a sorbent for individual PCB congeners including BZ 1, 52, 77, 153, and 169, respectively, in the presence and absence of humic acid. Results showed that preloading of activated carbon with humic acid significantly reduced the adsorption affinity for all selected PCB congeners. Experiments conducted without preloading of activated carbon demonstrated that desorption upon subsequent spiking with humic acid (simulating long-term exposure to pore water that contains high humic acid concentrations) was not found to be statistically significant, and varied with coplanarity of PCBs. Results provide important information for the design of reactive caps in sediments where high concentrations of dissolved organic carbon are found, and highlight the importance of considering site conditions when designing effective reactive caps

    Controls on the composition and lability of dissolved organic matter in Siberia's Kolyma River basin

    Get PDF
    High-latitude northern rivers export globally significant quantities of dissolved organic carbon (DOC) to the Arctic Ocean. Climate change, and its associated impacts on hydrology and potential mobilization of ancient organic matter from permafrost, is likely to modify the flux, composition, and thus biogeochemical cycling and fate of exported DOC in the Arctic. This study examined DOC concentration and the composition of dissolved organic matter (DOM) across the hydrograph in Siberia's Kolyma River, with a particular focus on the spring freshet period when the majority of the annual DOC load is exported. The composition of DOM within the Kolyma basin was characterized using absorbance-derived measurements (absorbance coefficienta330, specific UV absorbance (SUVA254), and spectral slope ratio SR) and fluorescence spectroscopy (fluorescence index and excitation-emission matrices (EEMs)), including parallel factor analyses of EEMs. Increased surface runoff during the spring freshet led to DOM optical properties indicative of terrestrial soil inputs with high humic-like fluorescence, SUVA254, and low SRand fluorescence index (FI). Under-ice waters, in contrast, displayed opposing trends in optical properties representing less aromatic, lower molecular weight DOM. We demonstrate that substantial losses of DOC can occur via biological (∼30% over 28 days) and photochemical pathways (>29% over 14 days), particularly in samples collected during the spring freshet. The emerging view is therefore that of a more dynamic and labile carbon pool than previously thought, where DOM composition plays a fundamental role in controlling the fate and removal of DOC at a pan-Arctic scale
    corecore