2 research outputs found

    Energy shaping control for robotic needle insertion

    Get PDF
    This work investigates the use of energy shaping control to reduce deflection in slender beams with tip load and actuation at the base. The ultimate goal of this research is a buckling avoidance strategy for robotic-assisted needle insertion. To this end, the rigid-link model of a flexible beam actuated at the base and subject to tip load is proposed, and an energy shaping approach is employed to construct a nonlinear controller that accounts for external forces. A comparative simulation study highlights the benefits of the proposed approach over a linear control baseline and a simplified nonlinear control

    Human–Machine Collaboration Modalities for Semi-Automated Needle Insertion Into Soft Tissue

    No full text
    corecore