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Abstract—This work investigates the use of energy shaping 
control to reduce deflection in slender beams with tip load and 
actuation at the base. The ultimate goal of this research is a 
buckling avoidance strategy for robotic-assisted needle insertion. 
To this end, the rigid-link model of a flexible beam actuated at 
the base and subject to tip load is proposed, and an energy 
shaping approach is employed to construct a nonlinear controller 
that accounts for external forces. A comparative simulation study 
highlights the benefits of the proposed approach over a linear 
control baseline and a simplified nonlinear control. 
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I. INTRODUCTION 

Needle deflection represents one of the main causes of 
error in traditional percutaneous interventions and can require 
repeated insertions, causing patient discomfort and increased 
duration of the clinical procedure [1], [2]. Robot-assisted 
needle insertion has the potential to improve accuracy and 
safety in percutaneous intervention and diagnosis. Typically, 
providing this functionality requires the ability to measure or 
estimate the insertion force and the needle deflection [3], [4], 
the provision of haptic feedback to the clinician, and a force or 
position control algorithm with proved stability and robustness 
to disturbances [5], [6]. Needle deflection can occur at any 
point during the insertion, depending on the needle geometry 
and on the forces acting on it. Insertion forces depend on 
insertion speed, insertion depth, tissue characteristics, and 
typically peak during or immediately after the puncture phase 
[7]. A comprehensive review of the strategies devised to 
control needle deflection can be found in [8]. Notable solutions 
include: the controlled rotation of bevel-tip needles [9]; a 
programmable needle tip consisting of multiple segments 
actuated independently [10]; steerable needles actuated by heat 
which is transmitted employing an optic fiber [11]. 

Slender needles, such as those used in biopsy, are 
particularly prone to buckling, which manifests itself as sudden 
lateral deflection when the axial force reaches the buckling 
load. While the risk of buckling can be mitigated employing 
stiffer needles with larger diameter, this approach is not 
desirable for biopsies due to increased patient discomfort. 
Taking inspiration from nature, a number of design principles 
that can reduce the risk of buckling have been highlighted in 
[12], however their implementation is often limited by 
manufacturing capabilities. In parallel, increasing attention has 
been drawn to the study of force control strategies for buckling 
avoidance [13]. Among the most notable approaches, a model 
predictive control for bevel-tip needles was presented in [14]. 
The application of a lateral force to the needle near the 
insertion point was proposed in [15], while an optimized path 

planning procedure for insertions in multi layered tissues was 
presented in [16]. Notable results in modelling and control of 
slender beams with tip load, which are representative of needle 
insertion, include: an integral LQR control for buckling 
avoidance of columns with piezoelectric actuators at both ends 
[17]; Hamiltonian models of a beam actuated at the base 
employing modal decomposition approaches in [18]; energy 
shaping control of a flexible beam with tip load in [19]–[21]. In 
practice however, actuators can often be placed only at the 
needle base, while linear controllers are only intended for small 
deflection. In summary, controlling needle insertion in the 
presence of lateral deflections remains an open problem. 

In this work an energy shaping control approach is 
employed to reduce lateral deflection in slender beams with tip 
load and actuation at the base. Energy shaping control is 
ideally suited for underactuated systems, can be combined with 
adaptive algorithms [22]–[24], and has been applied 
successfully to several mechanical systems [25]. For controller 
design purposes, an underactuated rigid-link model of the 
slender beam is constructed employing the pseudo-rigid-body 
paradigm [26], which is then related to the Euler-Bernoulli 
(EB) theory. A nonlinear controller is designed employing a 
port-controlled Hamiltonian formulation and stability 
conditions are discussed. Finally, the effectiveness of the 
proposed controller is demonstrated with simulations 
employing a representative model of the insertion forces.  

The rest of the paper is organized as follows: in Section II 
the system model is detailed and the energy shaping control 
formulation is briefly summarized. The controller design is 
outlined in Section III, while the simulation results are 
presented in Section IV. Concluding remarks and suggestions 
for future work are summarized in Section V. 

II. PROBLEM FORMULATION 

A. System Model 

Considering that insertion forces typically peak during the 
initial puncture and that the free length of the needle is then at 
the maximum, lateral deflection is particularly likely to occur 
in this condition, which is taken as reference in this work. 
Lateral forces acting on the needle due to the surrounding 
tissue are typically small in this case and are neglected for 
simplicity, while buckling and deflection generally occur 
according to the first mode shape. The needle is represented as 
a cantilever beam of length � with axial load �� applied at the 
tip and is approximated with a planar rigid-link model mounted 
on an actuated base (Figure 1). The model parameters are the 
length �  of the link and the elastic constant �� , which are 
defined as in [26], where � is the Young’s modulus and � is the 
area moment of inertia of the beam.  
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The parameters γ�, �� depend on the boundary conditions and 
on the load type, as defined in [27]. The resulting rigid-link 
system has two degrees-of-freedom (DOF): the translation of 
the base ��, and the rotation of the link ��.  

 
Fig. 1. a) Coaxial needle for percutaneous interventions; b) schematic of 
cantilever beam with first mode shape; c) corresponding rigid-link model. 

Since only the translation of the base is actuated, the system 
has underactuation degree one. The equations of motion on the 
coordinate axes �, � are: 

��� ������ � �� sin���� ��� � �� cos���� �"�� 	 # � ����� sin���� ��� � ������ 	 ��� 	�� � ���	sin	����  (2)

The mass � refers to the actuated base, while � is the mass of 
the unactuated link. The set of attainable equilibria ��∗  is 
defined setting �" 	 �� 	 0  in (2). Assuming ��∗ ≅ 0  and 
replacing sin	���∗� with a truncated Taylor series gives: ��∗ 	 0

��∗ 	 ()6+1 � �� ���⁄ . 
(3.a) 

(3.b)

The equilibrium (3.a) corresponds to the straight beam, while 
(3.b) exist only if �� / �� �⁄  and represent the buckled 
configurations. Substituting (1) in the above inequality gives:  �� / ����/��, (4) 

where �� ≅ 2.4  for this loading condition [27]. Thus (4) 
corresponds with good approximation to the first EB buckling 
load (i.e. 3� 	 �π 2⁄ ����/�� ). In summary, the rigid-link 
system (2) is a good approximation of continuous EB models 
and is suitable for control purposes, as indicated in [20], [28] 
and included references. 

B. Overview of Energy Shaping Control 

The open-loop dynamics of a generic 5  DOF 
underactuated system without physical damping can be 
expressed in Hamiltonian form as follows: 

6�"7"8 	 9 0 ��� 0: 6;<=;>=8 � 90?: # (5) 

The position � ∈ AB  and the momenta 7 	 C�" ∈ AB 
represent the system states. The control input # ∈ AD affects 
the system dynamics through the mapping ?��� ∈ ABED, with rank�?� 	 � I 5. The open-loop Hamiltonian is defined as = 	 J��, 7� � K��� , where J��, 7� 	 ��7LCM�7  is the 
kinetic energy, C��� 	 CL / 0  is the inertia matrix, and K���  is the open-loop potential energy. The 5 E 5  identity 

matrix is indicated with � , the symbol ;<�∙�  represents the 
gradient in �, while ;>�∙� is the gradient in 7.  

The control aim for underactuated systems corresponds to 
stabilizing the attainable equilibrium ��, 7� 	 ��∗, 0�, which is 
generally unstable in open-loop. Among the different energy 
shaping control formulations, Interconnection-and-Damping-
Assignment Passivity-Based-Control (IDA-PBC) is employed 
here to achieve the following closed-loop dynamics [22]: 

6�"7"8 	 6 0 CM�CO�COCM� P� � ?�Q?L8 6;<=O;>=O8 (6) 

The closed-loop Hamiltonian is =O 	 ��7LCOM�7 � KO , the 

closed-loop inertia matrix is CO , while P� 	 �P�L  is a free 
matrix, and �Q 	 �QL / 0 is a tuning parameter. As a result of 
IDA-PBC, the desired equilibrium becomes a strict minimizer 
of the closed-loop potential energy KO, thus ;<KO��∗� 	 0 and ;<�KO��∗� / 0. Equating (5) and (6) and defining the pseudo 
inverse of ?  as ?R 	 �?L?�M�?L  in case of underactuation, 
the IDA-PBC control law becomes: # 	 #ST � #OU#ST 	 ?R+;<= � COCM�;<=O � P�COM�7.#OU 	 ��Q?L;>=O

 (7) 

The energy shaping control #ST  assigns the equilibrium �∗ , 
while the damping-assignment #OU  ensures asymptotic 
stability of ��, 7� 	 ��∗, 0�. The design parameters (i.e. the 
matrix CO, P�, and the potential energy KO) should satisfy the 
following set of partial-differential-equations (PDE) ∀��, 7� ∈A�B , which are termed kinetic-energy PDE and potential-
energy PDE: 

?W X;<�7LCM�7� � COCM�;<�7LCOM�7�Y�?W�2P�COM�7� 	 0  (8.a) 

?W X;<K �COCM�+;<KO.Y 	 0 (8.b)

The term ?W is a full-rank left annihilator of ? and is defined 
so that ?W? 	 0. Notably, setting  CO 	 �DC  and P� 	 0 
verifies (8.a), while (8.b) becomes: 

?W+;<K � �D;<KO. 	 0 (9) 

This particular choice serves as starting point for the controller 
design in the following section. 

III.  CONTROLLER DESIGN 

The proposed control relies on the following assumptions. 

Assumption 1: The model parameters are exactly known. 

Assumption 2: The position � 	 ���, ��� and the velocity �"  are 
measurable. Additionally, |��| I � ≪ 1 and |��| I π/2. 

Assumption 3: The force �� \ 0 is measurable, bounded, and 
slowly varying. 

Notably Assumption 1 is verified if the needle geometry is 
known. Assumption 2, 3 are verified for system (2) since the 
force ��  and the position of the actuated base ��  can be 
directly measured with sensors, while the angle �� is uniquely 

a) b) c) 



identified by the deflection of the tip, which can be measured 
with a sensor or can be estimated with an observer [3]. The 
needle tip points towards the tissue (i.e. |��| I π/2), and the 
insertion depth is limited by the needle length (i.e. |��| I � 
and typically 0.05 I � I 0.2 , thus � ≪ 1	m ) Finally the 
insertion force typically varies in the range 0 ≤ �� ≤ 10	N. 

A. Partial Feedback Linearization 

The first step in the proposed design procedure consists in 
applying a partial feedback linearization to (2) to obtain an 
equivalent system with constant inertia matrix Ca 	 �. Pre-
multiplying both sides of (2) by CM� we obtain: 

bcd
ce ��� 	 f � �� cos������ � �cos�����
��� 	 sin����� f � �� 	��� �� � �� � sin������� cos����� � ���

 (10) 

The term f  is the new control input and is related to # 
according to the following equation: 

# 	 �� � � cos������f � �� sin���� ���� ��cos�����"�� 
(11) 

The energy shaping control f is subsequently designed based 
on the open-loop dynamics (10) and results in a nonlinear 
control law (see Remark 1). 

B. Energy Shaping Control 

Differently from the canonical system (5), the open-loop 
dynamics (10) contains the external force ��. Consequently, a 
modified energy shaping control is defined, where g  is the 
work of the external forces: 

#STa 	 ?R+;<= � ;<g � �D;<=Oa . (12) 

The new Hamiltonian =Oa  in (12) accounts for the work g 
according to the potential-energy PDE, which becomes: 

?W+;<K � ;<g � �D;<KOa. 	 0 (13) 

For system (2), K 	 �����/2  and g 	 ������ � � cos����� . 
As a consequence of partial feedback linearization, the input 
matrix for system (10) is ?a 	 h1 sin���� �⁄ iL  and its left 
annihilator is ?′W 	 h� sin���� �⁄ 1i , which substituted in 
(13) gives: 

�kKOak�� 1� sin���� � kKOak�� 	 �� 	������D � �� sin�������D  (14) 

The PDE (14) admits the following set of solutions: 

KOa 	 �� cos�������D � ��2����D ��� � �>2�D Φ�m� � n, (15) 

where m 	 �� � ��∗ � �o cos	���� , and ��  is a numeric value 
known at any instant and bounded (see Assumption 3). The 
parameter �> / 0 and the term Φ�∙� are chosen to satisfy the 
minimizer conditions ;<KOa���∗, ��∗� 	 0 and ;<�KOa���∗, ��∗� / 0. 
The constant n / 0  ensures positive definitiveness of KOa . 
Defining Φ�m� 	 �log	��m���� with ��∗ the prescribed position 
of the base (i.e. desired insertion depth) and ��∗ 	 0 gives: 

;<KOa���∗, ��∗� 	 0 (16.a) ;<�KOa���∗, ��∗� 	 �>+�� � ���. ���D� �⁄  (16.b) 

Notably, ;<�KOa���∗, ��∗� / 0 is satisfied only if �� I ��/�, which 
corresponds to the buckling load. It follows from (16) that 
buckling cannot be avoided for forces larger than the critical 
load 3�, which is reasonable if the beam is only actuated at the 
base. Finally, the general expression of the control law is: 

f 	 ?′R+;<K � ;<g � �D;<KOa. � �Q?aL�" /�D	 (17)

The stability conditions for the equilibrium � 	 ���∗, 0� of the 
closed-loop system (10),(17) are discussed in the following 
result. 

Proposition 1: Consider system (10) under Assumption 1-3 in 
closed loop with control (17), where �> / 0, �Q / 0 , and �� I ��/� . Then �∗ 	 ���∗, 0�  is a minimizer of KOa  and a 
locally asymptotically stable equilibrium of the closed-loop 
system. 

Proof: It follows directly from (16) that �∗ is a strict minimizer 
of KO′ if �> / 0	for any �� I ��/�.  
To prove the stability claim, we introduce the work of the 
external forces in the open-loop dynamics (5): 7" 	 �;<= � ;<g � ?′# (18)

Substituting (17) into (18) with CO 	 �DC  and P� 	 0 
recovers (6), with =Oa 	 �� 7LCOM�7 � KOa . Observing that KOa / 0 under Assumption 1-3, we take the Lyapunov function 
candidate =Oa 	 ��7LCOM�7 � KOa , which is positive definite 
and radially unbounded. Computing the time derivative of =Oa  
while substituting (6) gives: 

="Oa 	 ;<=OaL�" � ;>=OaL7" � KOa"	 �;>=OaL?′�Q?′L;>=Oa � KOa"
	 ��Q r s�Dt� � ��" cos�������D ≤ 0 (19)

At equilibrium ��" 	 0 thus it follows from (19) that s 	 ?aL�"  
converges to zero and �∗  is a stable equilibrium. To verify 
asymptotic stability, we study the trajectories of (10)-(17) 
restricted to the manifold s�u� 	 0	∀u, recalling that Ca 	 � 
hence 7 	 �"  and 7" 	 �� : s 	 	�"� � �	�"�		sin	����� ⁄ � 	 0 (20)

s" 	 sin������D v������� � v���� � �> log�m�m w sin����w
��"�� cos���� �⁄ � �> log�m�m�D 	 0  (21)

Imposing s� 	 0  and substituting (20),(21) provides two 
solutions: �"� 	 0 and �� 	 0. From (20) we conclude that in 
either case �"� 	 0. Finally, substituting (20),(21) with �� 	 0 
and �� I ��/� in the equation sx 	 0 gives the solution �"� 	 0. 
Thus, all trajectories within the manifold s�u� 	 0 are defined 
by �"� 	 �"� 	 0 . Consequently, 7 	 0  and 7" 	 0 , which 
substituted in (6) give ;<KOa 	0 and finally  � 	 �∗ from (16) 
hence the equilibrium �∗ is locally asymptotically stable ■ 



Corollary 1: Consider the closed-loop system (10),(17) in the 
presence of physical damping y 	 yL / 0. Then �∗ 	 ���∗, 0� 
is an asymptotically stable equilibrium if y��|�" |� \ z��" z. 
Proof:  Although physical damping could compromise stability 
in IDA-PBC, this is not the case here since CO 	 �DC [29]. 
Accounting for the damping matrix y 	 yL / 0 in (18) gives: 7" 	 �;<= � y;>= � ;<g �?′# (22) 

Substituting (17) into (22) and recalculating (19) gives: 

="Oa 	 ��Q r s�Dt� � �"L r y�Dt �" � ��" cos�������D  (23) 

If |�" |�y�� \ z��" z  it follows from (23) that ="Oa ≤ 0  for any �Q / 0 thus �" ∈ ℒ| ∩ ℒ�. According to Assumption 2-3 also 7" 	 �� ∈ ℒ| and consequently �"  converges to zero. Therefore 7, 7"  converge to zero, and ;<KOa 	0 from (6), which implies 
that � 	 �∗  from (16) hence asymptotic stability of the 
equilibrium �∗  is concluded. Finally, the result is global if y��|�" |� \ z��" z for all �"  ■ 

Remark 1: Choosing the conventional quadratic solution Φ�m� 	 m�  in (15) is not appropriate since it would result in ;<KOa���∗, ��∗� ≠ 0 . Instead, omitting the partial feedback 
linearization (10), the potential-energy PDE (14) becomes: kKOk�� 	 1�D +�� 	�� � ��� sin����. (24) 

In this case, Φ�m� 	 m�  and m 	 �� � ��∗  satisfy the 
minimum conditions. Additionally, # 	 f thus (17) becomes a 
linear control law, which represents the baseline in this work: # 	 �� � �>��� � ��∗� � �Q�"�/�D (25) 

A nonlinear version of (25) is constructed for comparison 
purposes with Φ�m� 	 log	�m��  and either m 	 ��∗ � �� � 1 
or ma 	 �� � ��∗ � 1 which gives: # 	 �� � �> log�m� /m � �Q�"�/�D (26) 

Thus in this case the partial feedback linearization (11) 
provides more design flexibility and serves a similar purpose to 
employing a generic closed-loop inertia matrix CO ≠ �DC. 
The advantage is that solving the kinetic-energy PDE (8.a) is 
trivial. This is particularly beneficial since analytical solutions 
of the kinetic-energy PDE only exist in specific cases. 

Remark 2: An assessment of different actuation strategies can 
be conducted inspecting the two minimum conditions (16). For 
instance, employing a bevel-tip needle in conjunction with a 
rotation of the base proved effective in controlling needle 
deflection during insertions in soft tissue [9]. To assess the 
benefit of this actuation strategy within the IDA-PBC scheme, 
a lateral tip force �� 	 ��� is introduced in the model dynamics 
(2), where � 	 tan	�α�  and α  is the angle of the bevel. The 
work of the external forces becomes then g 	 ������ �� cos����� � ���sin����#a , where a second control input #a 	 �sign���� 	 (1 is introduced to rotate the needle thus 
changing the plane of bending as soon a deflection occurs. 
Applying the feedback linearization (11) and solving the PDE 
(13) gives:  

KOaa 	 KOa � #a
���D �� sin���� (27) 

Evaluating the minimum conditions for (27) we have: 

�<KOaa���∗, ��∗� 	 � 0
� ��#a

���D
� (28.a)

�<�KOaa���∗, ��∗� 	 �>+�� � ���. ���D� �⁄  (28.b)

It follows form (28) that �∗ 	 ���∗, 0� is a minimizer of (27) 
only if �� 	 0 and �� I ��/� since #a can only switch between 
the values 1 and �1. This finding is in agreement with the 
literature advocating the use of bevel-tip needles for curved 
insertion paths rather than for straight insertions. Instead, the 
ability to continuously vary the lateral force �� is required to 
provide full control of the deflection and achieve straight 
insertion paths. The latter strategy was implemented in [15] 
applying a controlled force near the puncture site. In practice, 
the main limitation of this approach is that it requires an 
actuator in close proximity to the puncture site, which might 
not be feasible in some percutaneous interventions. 

IV.  SIMULATION RESULTS 

Simulations were conducted in Matlab® with the ode23 
solver. The following set of parameters representative of 
needle insertions in soft tissues were employed for system (2): � 	 0.001	Kg ; � 	 0.05	Kg ; � 	 0.18	m ; �� 	 0.13	Nm . 
The values of ��  and �  follow from (1) with � 	 120	GPa; � 	 0.1	mm�; 	� 	 0.2	m;  γ� 	 0.9; �� 	 2.4, which refer to 
a 18G titanium needle (OD	 	 1.27	mm, ID 	 0.84	mm). The 
buckling load 3� ≅ 0.72	N is comparable to typical insertion 
forces. In order to model the needle insertion forces [7], the 
following expression of �� was used in the simulation, where ��, ��, ��, �� are positive constants: 

�� 	 X�� � ����U> � ��tanh+���"�U>.Y ���  (29)

The terms ��U> 	 �� � �cos���� � 1��  and �"�U> 	 �"� ��"� sin���� �  are respectively the tip position and the tip 
velocity. The parameter �� represents the fracture force of the 
tissue, the parameter ��  accounts for the elastic force due to 
tissue deformation. The parameter �� represents friction forces, 
including Coulomb and viscous friction, and the function tanh	�∙�  is a smooth implementation of the sign�∙�  function 
which is used to reduce simulation runtime. Finally, the 
parameter �� is a scaling factor applied to the insertion speed. 
For demonstrative purposes, the numerical values of the 
parameters have been set to: �� 	 0.75 ; �� 	 2.2  and 
alternatively �� 	 2.5; �� 	 0.25; �� 	 100. Substituting these 
values in (29) the force �� varies in the interval 3 4⁄ 3� I �� I5/4	3� which is representative of needle insertions in soft 
tissue, thus buckling is likely to occur in in these conditions. 
While in a real needle insertion the surrounding tissue would 
act on the needle with a lateral distributed load, this effect is 
minor during the initial puncture and is neglected here for 
simplicity. The controller (11)-(17) has been implemented with 
the following tuning parameters:  �> 	 10; �Q 	 3, �D 	 1. 
Since very large deflections were registered for the baseline 
controller (23) with the same values, the following parameters 



have been used to provide a meaningful comparison: �> 	 2; �Q 	 15 . The desired insertion depth ��∗ 	 0.1	m  is reached 
within 30 seconds in all the simulations, which is 
representative of percutaneous interventions [1], [2]. 

 
Fig. 2. Time history of the position � with �� 	 2.2: a) control (11)-(17); b) 
control (25). The prescribed insertion depth is ��∗ 	 0.1m. 

  
Fig. 3. Insertion force with �� 	 2.2: a) control (11)-(17); b) control (25). 

 
Fig. 4. Position � with �� 	 2.5: a) control (11)-(17); b) control (25). 

  
Fig. 5. Insertion force with �� 	 2.5: a) control (11)-(17); b) control (25). 

The time history of the position � with �� 	 2.2 is shown 
in Figure 2. While the lateral deflection remains close to zero 
with control (11)-(17), it increases rapidly with control (25). 
Similarly, the actuation force increases more gradually with 

control (11)-(17), as highlighted in Figure 3 and remains 
below the buckling load. The time histories of the position � 
and the insertion force with �� 	 2.5, which corresponds to a 
stiffer tissue, are depicted in Figure 4 and Figure 5. In this 
case, a non-zero deflection is observed with both controllers 
since the insertion force reaches the buckling load 3� . 
Nevertheless, the deflection is considerably smaller with 
controller (11)-(17). Finally, the nonlinear control (26) with m 	 ��∗ � �� � 1 reduces the lateral deflections compared to 
the linear baseline (25). However, it is less effective than the 
proposed control (11)-(17) as shown comparing Figure 6 and 
Figure 4. Similar results are obtained introducing small lateral 
forces (e.g. �� 	 0.2	N). 

 

Fig. 6. Nonlinear control (26): a) time history of the position � for �� 	 2.5; 
b) corresponding insertion force. 

  
Fig. 7. Numerical values of ;<�KOa for control (11)-(17); b) values of ;<�KO for 
control (25). 

 

Fig. 8. Numerical values of ;<�KO  for control (26): a) m 	 ��∗ � �� � 1; b) ma 	 �� � ��∗ � 1. 

Comparing the closed-loop potential energies provides 
further insight on the differences between controller (11)-(17), 
control (25), and control (26). To this end, the values of ;<�KOaand ;<�KO for different positions � around the equilibrium �∗ are plotted in Figure 7. Firstly, the magnitude of the plots is 
different even if the same parameters are employed (i.e. 

0 10 20 30 40 50
-0.2

-0.1

0

0.1

0.2

time [s]

po
si

tio
n

 

 

q1

q2

0 10 20 30 40 50
-0.2

-0.1

0

0.1

0.2

time [s]

po
si

tio
n

 

 

q1

q2

0 10 20 30 40 50
0.6

0.65

0.7

0.75

0.8

time [s]

In
se

rt
io

n 
fo

rc
e 

[N
]

0 10 20 30 40 50
0.6

0.65

0.7

0.75

0.8

time [s]

In
se

rt
io

n 
fo

rc
e 

[N
]

0 10 20 30 40 50
-0.2

-0.1

0

0.1

0.2

time [s]

po
si

tio
n

 

 

q1

q2

0 10 20 30 40 50
-0.2

-0.1

0

0.1

0.2

time [s]

po
si

tio
n

 

 

q1

q2

0 10 20 30 40 50
0.6

0.65

0.7

0.75

0.8

time [s]

In
se

rt
io

n 
fo

rc
e 

[N
]

0 10 20 30 40 50
0.6

0.65

0.7

0.75

0.8

time [s]

In
se

rt
io

n 
fo

rc
e 

[N
]

0 10 20 30 40 50
-0.2

-0.1

0

0.1

0.2

time [s]
po

si
tio

n

 

 

q1

q2

0 10 20 30 40 50
0.6

0.65

0.7

0.75

0.8

time [s]

In
se

rt
io

n 
fo

rc
e 

[N
]

0

0.5

1

-0.1

0

0.1
0

10

20

q1q2

d2
V

d

0

0.5

1

-0.1

0

0.1
0

0.005

0.01

0.015

q1q2

d2
V

d

0

0.5

1

-0.1

0

0.1
0

2

4

q1q2

d2
V

d

0

0.5

1

-0.1

0

0.1
0

0.005

0.01

0.015

q1q2

d2
V

d

a) b) 

a) b) 

a) b) 

a) b) 

a) b) 

a) b) 

a) b) 



�> 	 10, �D 	 1). This effect is due to the partial feedback 
linearization (11) that scales ;<�KOa  by a factor 1/� . 
Additionally, while ;<�KOa  increases with �� , ;<�KO  does not 
depend on ��, therefore the insertion force is modulated more 
gradually with the controller (17). Control (26) with m 	 ��∗ ��� � 1  shows that ;<�KO  increases with ��  and consequently 
the actuation force is smaller during the initial phase of the 
insertion. Although this trend is similar to ;<�KOa  (see Figure 
7.a), ;<�KO  shows a steeper variation with ��(see Figure 8.a) 
which explains the better performance of control (11)-(17). 
Instead, employing m′ 	 �� � ��∗ � 1 in (26) the insertion 
force decreases with �� (see Figure 8.b) thus resulting in even 
larger deflections. Since the performance of the controllers 
depends on the tuning parameters �>, �Q , �D, lateral deflection 
can be further reduced decreasing �> and �D, and increasing �Q . However, this could result in a slower needle insertion, 
which might conflict with the requirements of the clinical 
procedure (e.g.  needle insertions under breath-hold should 
typically be completed within a few seconds). 

V. CONCLUSIONS 

The control problem for a cantilever beam with tip load and 
base actuation was investigated. An energy shaping controller 
that accounts for external forces was designed employing a 
rigid-link model and stability conditions were discussed. The 
effectiveness of the proposed controller compared to a linear 
baseline and to a nonlinear alternative was demonstrated with 
numerical simulations employing a representative model of the 
insertion forces. In our future work we intend to validate the 
results experimentally with needle insertions in phantoms. 
Further objectives include the study of different actuation 
strategies and of different models of the needle.  
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