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Abstract—This work investigates the use of energy shaping
control to reduce deflection in slender beams withip load and
actuation at the base. The ultimate goal of this mearch is a
buckling avoidance strategy for robotic-assisted rezlle insertion.
To this end, the rigid-link model of a flexible bean actuated at
the base and subject to tip load is proposed, andnaenergy
shaping approach is employed to construct a nonlire controller
that accounts for external forces. A comparative siulation study
highlights the benefits of the proposed approach @r a linear
control baseline and a simplified nonlinear contral
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I. INTRODUCTION

Needle deflection represents one of the main cao$es
error in traditional percutaneous interventions aad require
repeated insertions, causing patient discomfort ianckased
duration of the clinical procedure [1], [2]. Rolassisted
needle insertion has the potential to improve ammurand
safety in percutaneous intervention and diagndsypically,
providing this functionality requires the abilitp measure or
estimate the insertion force and the needle dé&ied8], [4],
the provision of haptic feedback to the cliniciand a force or
position control algorithm with proved stability nobustness
to disturbances [5], [6]. Needle deflection canuvcat any
point during the insertion, depending on the negglemetry
and on the forces acting on it. Insertion forcepete on
insertion speed, insertion depth, tissue charatiesj and
typically peak during or immediately after the pture phase
[7]. A comprehensive review of the strategies dewigo
control needle deflection can be found in [8]. Niigasolutions
include: the controlled rotation of bevel-tip neel[9]; a
programmable needle tip consisting of multiple segi®
actuated independently [10]; steerable needlestxtiby heat
which is transmitted employing an optic fiber [11].

Slender needles, such as those used in biopsy,
particularly prone to buckling, which manifestelfsas sudden
lateral deflection when the axial force reaches hhekling
load. While the risk of buckling can be mitigatechpoying
stiffer needles with larger diameter, this approdashnot
desirable for biopsies due to increased patientodigort.
Taking inspiration from nature, a number of desigimciples
that can reduce the risk of buckling have beenliglted in
[12], however their implementation is often limiteby
manufacturing capabilities. In parallel, increasattgntion has
been drawn to the study of force control stratefpes®uckling
avoidance [13]. Among the most notable approachesodel
predictive control for bevel-tip needles was préserin [14].
The application of a lateral force to the needlarnthe
insertion point was proposed in [15], while an optied path
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planning procedure for insertions in multi layetessues was
presented in [16]. Notable results in modelling andtrol of
slender beams with tip load, which are represesmtatf needle
insertion, include: an integral LQR control for kiicg
avoidance of columns with piezoelectric actuatdrsadh ends
[17]; Hamiltonian models of a beam actuated at ilase
employing modal decomposition approaches in [18krgy
shaping control of a flexible beam with tip load1®9]-[21]. In
practice however, actuators can often be placeg ahlthe
needle base, while linear controllers are onlyridesl for small
deflection. In summary, controlling needle insartimn the
presence of lateral deflections remains an opeligma

In this work an energy shaping control approach is
employed to reduce lateral deflection in slendemie with tip
load and actuation at the base. Energy shapingratorst
ideally suited for underactuated systems, can b#gwed with
adaptive algorithms [22]-[24], and has been applied
successfully to several mechanical systems [25].cBotroller
design purposes, an underactuated rigid-link mazfethe
slender beam is constructed employing the pseujitoiody
paradigm [26], which is then related to the Euler®ulli
(EB) theory. A nonlinear controller is designed éogmg a
port-controlled Hamiltonian formulation and statyili
conditions are discussed. Finally, the effectivene$ the
proposed controller is demonstrated with simulaion
employing a representative model of the insertmnods.

The rest of the paper is organized as follows: éntidn I
the system model is detailed and the energy shagngrol
formulation is briefly summarized. The controlleesign is
outlined in Section Ill, while the simulation retsulare
presented in Section IV. Concluding remarks andysstipns
for future work are summarized in Section V.

a'?‘é System Model

Considering that insertion forces typically peakindg the
initial puncture and that the free length of thedile is then at
the maximum, lateral deflection is particularlydii to occur
in this condition, which is taken as reference fis twork.
Lateral forces acting on the needle due to theosuoding
tissue are typically small in this case and arelautgd for
simplicity, while buckling and deflection generallgccur
according to the first mode shape. The needlepiesented as
a cantilever beam of lengthwith axial loadF, applied at the
tip and is approximated with a planar rigid-link deb mounted
on an actuated base (Figure 1). The model parasneterthe
length! of the link and the elastic constdnt, which are
defined as in [26], wherE is the Young’s modulus ards the
area moment of inertia of the beam.

PROBLEM FORMULATION



l=]/9L

ke = YokoEl/L @

The parameteng, kg depend on the boundary conditions and

on the load type, as defined in [27]. The resultiigyd-link
system has two degrees-of-freedom (DOF): the tatinsl of
the basey,, and the rotation of the ling,.

a)

L 1)

Fig. 1. a) Coaxial needle for percutaneous interventionssdnematic of
cantilever beam with first mode shape; c) corredpanrigid-link model.

Since only the translation of the base is actuatesl,system
has underactuation degree one. The equations @mun the
coordinate axesg, x are:

{(M +m)g, —misin(qz) G, — mlcos(qz) G5 = u —

E,

'y
. . . . 2
—mlsin(q,) §; + mli?4, = —k. q, + FE,lsin(q,)

The mas3/ refers to the actuated base, whilds the mass of
the unactuated link. The set of attainable equdlilgy is
defined settingg =G =0 in (2). Assumingg; =0 and
replacingsin(g;) with a truncated Taylor series gives:

4> =0

g =+ /6(1 —k./F,l)

The equilibrium (3.a) corresponds to the straigkdrh, while
(3.b) exist only ifF, >k./l and represent the buckled
configurations. Substituting (1) in the above inaiy gives:

E, > koEl/I?, (4)

where kg = 2.4 for this loading condition [27]. Thus (4)
corresponds with good approximation to the first lERkling
load (i.e.P; = (m/2)?EI/L?). In summary, the rigid-link
system (2) is a good approximation of continuousri@iels
and is suitable for control purposes, as indicatef20], [28]
and included references.

(3.8)
(3.b)

B. Overview of Energy Shaping Control

The open-loop dynamics of a generim DOF

underactuated system without physical damping can b

expressed in Hamiltonian form as follows:

q1_[0 I VqH] 0
[p]_ -1 o] [VpH +[G]” ®)
The position g € R® and the momentap = Mg¢ € R"

represent the system states. The control inpaifR™ affects
the system dynamics through the mapgiig) € R™*™, with

rank(G) = m < n. The open-loop Hamiltonian is defined as Notably Assumption 1 is verified

H=T(qp)+V(q) , where T(q,p) =-p"M'p is the
kinetic energyM(q) = MT > 0 is the inertia matrix, and
V(q) is the open-loop potential energy. The n identity

matrix is indicated with, the symbolV,(-) represents the
gradient ing, while V,,(*) is the gradient ip.

The control aim for underactuated systems corredpdom
stabilizing the attainable equilibriutg, p) = (q*, 0), which is
generally unstable in open-loop. Among the différenergy
shaping control formulations, Interconnection-arahiping-
Assignment Passivity-Based-Control (IDA-PBC) is éogpd
here to achieve the following closed-loop dynanix:

M_lMd ] Vqu]

[Z] B [_Md]v[_l J, — Gk,GTIIV,Hy (6)

The closed-loop Hamiltonian iH,; = %pT]v[d‘lp +Vy, the
closed-loop inertia matrix i3€;, while J, = —JT is a free
matrix, andk,, = kI > 0 is a tuning parameter. As a result of
IDA-PBC, the desired equilibrium becomes a striatimizer

of the closed-loop potential enerly, thusv,V,(¢*) = 0 and
VzVa(q*) > 0. Equating (5) and (6) and defining the pseudo
inverse ofG asGt = (GTG)™'GT in case of underactuation,
the IDA-PBC control law becomes:

U = Ugg + Ugi
Ups = GT(V,H — MyM ™V, Hy + J,M7'p)
udl' = —kaTvad

(7)

The energy shaping contral, assigns the equilibrium*,
while the damping-assignmentt,;; ensures asymptotic
stability of (q,p) = (q¢*,0). The design parameters (i.e. the
matrix My, J,, and the potential enerdy) should satisfy the
following set of partial-differential-equations (EDv(q,p) €
R2™, which are termed kinetic-energy PDE and potential
energy PDE:

G+ (Vg (@M 1p) — MMV, ("M D))
+G*(2):Mg'p) =0
G+ (VgV = MM (VgVy)) = 0

(8.2)

(8.b)

The termG* is a full-rank left annihilator of and is defined
so thatG1G = 0. Notably, setting M, = k,, M andj, =0
verifies (8.a), while (8.b) becomes:

GH(VyV — knVyVy) =0 (9)
This particular choice serves as starting pointtiercontroller
design in the following section.

[Il. CONTROLLERDESIGN

The proposed control relies on the following asstiomg.
Assumption 1: The model parameters are exactly known.

Assumption 2: The positiorng = (g4, q;) and the velocity) are
measurable. Additionallyg,| < I « 1 and|q,| < /2.

Assumption 3: The forceF, > 0 is measurable, bounded, and
slowly varying.

if the needle geometry is
known. Assumption 2, 3 are verified for system (2) since the
force F, and the position of the actuated bagecan be
directly measured with sensors, while the amglés uniquely



identified by the deflection of the tip, which cke measured
with a sensor or can be estimated with an obsdBjefThe
needle tip points towards the tissue (i < m/2), and the
insertion depth is limited by the needle lengtle.(ig,| <
and typically 0.05<1<0.2, thusl <« 1m) Finally the
insertion force typically varies in the range< £, < 10 N.

A. Partial Feedback Linearization
The first step in the proposed design proceduraistmin

applying a partial feedback linearization to (2)dbtain an
equivalent system with constant inertia maX = I. Pre-
multiplying both sides of (2) by« ~* we obtain:

( G o R cos(q,)?

=V m cos(q,)?

. sin(qz) v— k_t M sin(q,)

qu l miz 2Ty g cos(g,)?% + Mml
The termv is the new control input and is related o
according to the following equation:

(10)

g2 sin(qy) k¢

u= (M +mecos(q2)*)v + ; (11)

— mlcos(q2)4;

VoVa(qiqz) =0 (16.a)
Vavi(ai, a3) = ky (ke — Fyl)/(mk3, (16.b)

Notably,V2V;(q3,q3) > 0 is satisfied only i, < k, /1, which
corresponds to the buckling load. It follows from6) that
buckling cannot be avoided for forces larger tham dritical
loadP,, which is reasonable if the beam is only actuatetthe
base. Finally, the general expression of the cblavois:

v=G6YV,V -V W — kY, V) — k,G' q/ky  (17)

The stability conditions for the equilibriugn= (g3, 0) of the
closed-loop system (10),(17) are discussed in tlevwing
result.

Proposition 1: Consider system (10) undAssumption 1-3 in
closed loop with control (17), where, > 0,k, >0, and
F, <k./l. Thenq" = (q;,0) is a minimizer of/; and a
locally asymptotically stable equilibrium of theoskd-loop
system.

Proof: It follows directly from (16) thag™ is a strict minimizer
of V" if k, > 0 for anyF, < k./L.

To prove the stability claim, we introduce the wark the
external forces in the open-loop dynamics (5):

The energy shaping controlis subsequently designed based

on the open-loop dynamics (10) and results in alimear
control law (se®kemark 1).

B. Energy Shaping Control
Differently from the canonical system (5), the opeop
dynamics (10) contains the external foF;e Consequently, a

modified energy shaping control is defined, whifds the
work of the external forces:

ups = G (V,H -V W — kY, HY) (12)

The new HamiltoniarH; in (12) accounts for the wor/

according to the potential-energy PDE, which becme
GH(VV =V W — kY, Vi) =0 (13)

For system (2)V = k.q5/2 andW = —F,(q; + lcos(q)).

As a consequence of partial feedback linearizatibe,input
matrix for system (10) i€’ =[1 sin(q,)/l]T and its left
annihilator isG'* = [—sin(q,)/l 1], which substituted in

(13) gives:
av;1 av; k sin
_OVg sin(q2)+—d= tZCIZ —F, (q2) (14)
dqq; 1 dq, mlck,, mlk,,
The PDE (14) admits the following set of solutions:
cos(q) k. k,
V;=F 2 d ¢, (15
e =Bt T ameE, 9 Ty, W +E (19)

wherew = q, —qi — %cos(qz), andF, is a numeric value
known at any instant and bounded (gesumption 3). The
parametek, > 0 and the tern®(-) are chosen to satisfy the
minimizer condition/,V,;(q;,q5) = 0 andVzV;(q1,q5) > 0.
The constanC > 0 ensures positive definitiveness Bf .
Defining®(w) = (log(—wl))? with ¢; the prescribed position
of the base (i.e. desired insertion depth) @nhek 0 gives:

p=—V,H+V,W +Gu (18)

Substituting (17) into (18) withM,; = k,,M and J, =0
recovers (6), withH} = %pTMd_lp +V; . Observing that
V; > 0 underAssumption 1-3, we take the Lyapunov function
candidateH;, = %pTMd‘lp + V4, which is positive definite
and radially unbounded. Computing the time derratfH;
while substituting (6) gives:

Hy =V HT G+ V,HIp+ V)
= —V,H] G'k,G""V,H} + V]
. cos(qy) <

z 2
- —k (—) F <
k) T Tk,

At equilibrium Fy = 0 thus it follows from (19) that = G'" ¢
converges to zero ang is a stable equilibrium. To verify
asymptotic stability, we study the trajectories (GD)-(17)

restricted to the manifold(t) = 0 V¢, recalling thatM’ = I
hencep = g andp = §:

(19)
0

z= ¢+ (qz sin(qz)) /1=0 (20)
st )
. kplog(w) @1
+ g3 cos(qz)/l — Tk, 0

Imposing Z =0 and substituting (20),(21) provides two
solutions:q, = 0 andg, = 0. From (20) we conclude that in
either caseg, = 0. Finally, substituting (20),(21) with, = 0
andF, < k./l in the equatiod = 0 gives the solutiog, = 0.
Thus, all trajectories within the manifaldt) = 0 are defined
by ¢, =¢, =0. Consequentlyp =0 and p =0, which
substituted in (6) giv€,V,; =0 and finally g = g* from (16)
hence the equilibrium™* is locally asymptotically stabie



Corallary 1: Consider the closed-loop system (10),(17) in the

presence of physical dampiRg= R” > 0. Theng* = (q;,0)
is an asymptotically stable equilibriumAfnl|g|? > |F, |.

Proof: Although physical damping could compromise siigbi
in IDA-PBC, this is not the case here siddg = k,, M [29].
Accounting for the damping matrix = RT > 0 in (18) gives:

p=—V,H—RV,H+V,W +Gu (22)
Substituting (17) into (22) and recalculating (§8)es:
. Z \? R . cos(q,)
I _ — ) —agT(—])g 23
Ha = —ky (km) q (km) e )

If 1¢|*Rml > |E,| it follows from (23) that{; <0 for any
k, > 0 thusg € L® n L2. According toAssumption 2-3 also

!

u .
Vi =Vg— kaFx sin(q,) (27)
Evaluating the minimum conditions for (27) we have:
0
AACEH T (28.2)
mlk,,
ViVe (a1 q3) = ky(ke — Fy1)/ (mk3) (28.b)

It follows form (28) thay* = (g7,0) is a minimizer of (27)
only if £, = 0 andF, < k./l sinceu’ can only switch between
the valuesl and—1. This finding is in agreement with the
literature advocating the use of bevel-tip need&scurved
insertion paths rather than for straight insertidnstead, the
ability to continuously vary the lateral forégis required to

p = ¢ € L~ and consequently converges to zero. Therefore provide full control of the deflection and achieggraight
p,p converge to zero, ang,V; =0 from (6), which implies insertion paths. The latter strategy was implenterite [15]
that ¢ = ¢* from (16) hence asymptotic stability of the applying a controlled force near the puncture sitepractice,
equilibrium ¢* is concluded. Finally, the result is global if the main limitation of this approach is that it uegs an

Rml|g|* = |F| forallg m

Remark 1. Choosing the conventional quadratic solution

®(w) = w? in (15) is not appropriate since it would resualt

V,Vi(qi,q3) # 0 . Instead, omitting the partial feedback

linearization (10), the potential-energy PDE (1d¢tmes:
vy
aq;
In this case,®(w) =w? and w=gq; —q; satisfy the
minimum conditions. Additionallyx = v thus (17) becomes a
linear control law, which represents the baselmihis work:
u="F—ky(q —q)) —koG1/kn (25)

A nonlinear version of (25) is constructed for camgon
purposes withd(w) = log(w)? and eithew = q; —q; + 1
orw' = q, —q; + 1 which gives:

1
= (k: g, — F,lsin(qy)) (24)

u=F, +k,logWw) /w — k,q41/knm (26)

Thus in this case the partial feedback lineariratid1)
provides more design flexibility and serves a samgurpose to
employing a generic closed-loop inertia mafy # k,, M.
The advantage is that solving the kinetic-energ\e RB.a) is
trivial. This is particularly beneficial since agtital solutions
of the kinetic-energy PDE only exist in specificea.

Remark 2: An assessment of different actuation strategées c
be conducted inspecting the two minimum conditigi®. For
instance, employing a bevel-tip needle in conjunmctivith a
rotation of the base proved effective in contrglineedle
deflection during insertions in soft tissue [9]. Bssess the
benefit of this actuation strategy within the ID&® scheme,
a lateral tip force, = cF, is introduced in the model dynamics
(2), wherec = tan(a) anda is the angle of the bevel. The
work of the external forces becomes thén= —F,(q, +
lcos(q,)) + Elsin(gq,)u’ , where a second control input

actuator in close proximity to the puncture sitdyicls might
not be feasible in some percutaneous interventions.

IV. SIMULATION RESULTS

Simulations were conducted in Matlab® with thde23
solver. The following set of parameters represamabf
needle insertions in soft tissues were employedystem (2):
m=0.001Kg; M =0.05Kg; [=0.18m; k; =0.13 Nm.
The values ok, and!l follow from (1) with F = 120 GPa;

I =0.1mm?* L=02m; yg=0.9; kg = 2.4, which refer to

a 18G titanium needl®pD = 1.27 mm, ID = 0.84 mm). The
buckling loadP, = 0.72 N is comparable to typical insertion
forces. In order to model the needle insertion dergr], the
following expression of;, was used in the simulation, where
Co, C1, C2, C3 @re positive constants:

) k
E, = (CO + 1 Veip + cztanh(c3ytip))7t (29)
The terms y, = q; + (cos(qz) — DI and yup, =q; —

g, sin(q,) L are respectively the tip position and the tip
velocity. The parametey, represents the fracture force of the
tissue, the parameter accounts for the elastic force due to
tissue deformation. The parametgrepresents friction forces,
including Coulomb and viscous friction, and the duon
tanh(-) is a smooth implementation of thi&n(-) function
which is used to reduce simulation runtime. Finaltiie
parameter; is a scaling factor applied to the insertion speed
For demonstrative purposes, the numerical valuesthef
parameters have been set Qg =0.75; ¢; =2.2 and
alternativelyc; = 2.5; ¢, = 0.25; c; = 100. Substituting these
values in (29) the forcg, varies in the intervad/4 P, < F, <
5/4 P; which is representative of needle insertions int sof
tissue, thus buckling is likely to occur in in teesonditions.
While in a real needle insertion the surroundirsgue would
act on the needle with a lateral distributed |ahis effect is
minor during the initial puncture and is neglecteere for

u' = —sign(q,) = 1 is introduced to rotate the needle thussimplicity. The controller (11)-(17) has been impknted with

changing the plane of bending as soon a defleatimeurs.
Applying the feedback linearization (11) and sofvithe PDE
(13) gives:

the following tuning parametersk, = 10; k, = 3, k,, = 1.
Since very large deflections were registered far baseline
controller (23) with the same values, the followjpgrameters



have been used to provide a meaningful comparigpr: 2;

control (11)-(17), as highlighted in Figure 3 arneimains

k, = 15. The desired insertion depiti = 0.1 m is reached below the buckling load. The time histories of fh@sitiong

within 30 seconds in all the simulations, which
representative of percutaneous interventions 1], [
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Fig. 2. Time history of the positiog with ¢, = 2.2: a) control (11)-(17); b)
control (25). The prescribed insertion depth;jis= 0.1m.
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Fig. 3. Insertion force witrc; = 2.2: @) control (11)-(17); b) control (25).
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Fig. 4. Positiong with ¢; = 2.5: a) control (11)-(17); b) control (25).
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Fig. 5. Insertion force witrc; = 2.5: @) control (11)-(17); b) control (25).

The time history of the positioqpwith ¢; = 2.2 is shown
in Figure 2. While the lateral deflection remaihsse to zero
with control (11)-(17), it increases rapidly witlorgrol (25).
Similarly, the actuation force increases more gadlgiuwith

isand the insertion force witly = 2.5, which corresponds to a
stiffer tissue, are depicted in Figure 4 and Figbrdn this
case, a non-zero deflection is observed with betfirollers
since the insertion force reaches the buckling I&ad
Nevertheless, the deflection is considerably smalléth
controller (11)-(17). Finally, the nonlinear cont(@6) with
w = q; — q, + 1 reduces the lateral deflections compared to
the linear baseline (25). However, it is less dffecthan the
proposed control (11)-(17) as shown comparing Eiduand
Figure 4. Similar results are obtained introducsngall lateral
forces (e.gF, = 0.2 N).
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Fig. 6. Nonlinear control (26): a) time history of the pgasi g for ¢; = 2.5;
b) corresponding insertion force.

Fig. 7. Numerical values dv2V; for control (11)-(17); b) values &2V, for
control (25).

Fig. 8. Numerical values o2V, for control (26): aw = q; —
w'=q —q;+1.

g +1; b)

Comparing the closed-loop potential energies pesid
further insight on the differences between corgro{lL1)-(17),
control (25), and control (26). To this end, thdues of
VzV,andV3V, for different positiong around the equilibrium
q" are plotted in Figure 7. Firstly, the magnitudehd plots is
different even if the same parameters are emplofyed



k, = 10,k,, = 1). This effect is due to the partial feedback?
linearization (11) that scale§;V,; by a factor1/m .
Additionally, while V2V, increases withy, , V2V, does not g
depend ony,, therefore the insertion force is modulated more
gradually with the controller (17). Control (26)tiwviv = q; —

g, + 1 shows thaW3V, increases withy; and consequently
the actuation force is smaller during the initiddape of the
insertion. Although this trend is similar WV, (see Figure 10
7.a),VaV, shows a steeper variation wigh(see Figure 8.a)
which explains the better performance of contrd){(7). 11
Instead, employingy’ = q; —q; +1in (26) the insertion
force decreases withy (see Figure 8.b) thus resulting in even
larger deflections. Since the performance of thatrodlers
depends on the tuning parameteygsk,, k,,,, lateral deflection
can be further reduced decreaskpgandk,,, and increasing 13
k,. However, this could result in a slower needleeitien,
which might conflict with the requirements of thénizal
procedure (e.g. needle insertions under breatth-sBbbuld
typically be completed within a few seconds).

14

15
V. CONCLUSIONS

The control problem for a cantilever beam withltipd and ;¢
base actuation was investigated. An energy shagongroller
that accounts for external forces was designed &yimg a
rigid-link model and stability conditions were dissed. The 17
effectiveness of the proposed controller compaced tinear
baseline and to a nonlinear alternative was derratest with
numerical simulations employing a representativelehof the g
insertion forces. In our future work we intend talidate the
results experimentally with needle insertions inamoms.
Further objectives include the study of differemtuation
strategies and of different models of the needle. 19
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