2,813 research outputs found

    Incorporating Behavioral Constraints in Online AI Systems

    Full text link
    AI systems that learn through reward feedback about the actions they take are increasingly deployed in domains that have significant impact on our daily life. However, in many cases the online rewards should not be the only guiding criteria, as there are additional constraints and/or priorities imposed by regulations, values, preferences, or ethical principles. We detail a novel online agent that learns a set of behavioral constraints by observation and uses these learned constraints as a guide when making decisions in an online setting while still being reactive to reward feedback. To define this agent, we propose to adopt a novel extension to the classical contextual multi-armed bandit setting and we provide a new algorithm called Behavior Constrained Thompson Sampling (BCTS) that allows for online learning while obeying exogenous constraints. Our agent learns a constrained policy that implements the observed behavioral constraints demonstrated by a teacher agent, and then uses this constrained policy to guide the reward-based online exploration and exploitation. We characterize the upper bound on the expected regret of the contextual bandit algorithm that underlies our agent and provide a case study with real world data in two application domains. Our experiments show that the designed agent is able to act within the set of behavior constraints without significantly degrading its overall reward performance.Comment: 9 pages, 6 figure

    The Assistive Multi-Armed Bandit

    Full text link
    Learning preferences implicit in the choices humans make is a well studied problem in both economics and computer science. However, most work makes the assumption that humans are acting (noisily) optimally with respect to their preferences. Such approaches can fail when people are themselves learning about what they want. In this work, we introduce the assistive multi-armed bandit, where a robot assists a human playing a bandit task to maximize cumulative reward. In this problem, the human does not know the reward function but can learn it through the rewards received from arm pulls; the robot only observes which arms the human pulls but not the reward associated with each pull. We offer sufficient and necessary conditions for successfully assisting the human in this framework. Surprisingly, better human performance in isolation does not necessarily lead to better performance when assisted by the robot: a human policy can do better by effectively communicating its observed rewards to the robot. We conduct proof-of-concept experiments that support these results. We see this work as contributing towards a theory behind algorithms for human-robot interaction.Comment: Accepted to HRI 201
    • …
    corecore