64,240 research outputs found

    GECKA3D: A 3D Game Engine for Commonsense Knowledge Acquisition

    Get PDF
    Commonsense knowledge representation and reasoning is key for tasks such as artificial intelligence and natural language understanding. Since commonsense consists of information that humans take for granted, gathering it is an extremely difficult task. In this paper, we introduce a novel 3D game engine for commonsense knowledge acquisition (GECKA3D) which aims to collect commonsense from game designers through the development of serious games. GECKA3D integrates the potential of serious games and games with a purpose. This provides a platform for the acquisition of re-usable and multi-purpose knowledge, and also enables the development of games that can provide entertainment value and teach players something meaningful about the actual world they live in

    Interaction and Experience in Enactive Intelligence and Humanoid Robotics

    Get PDF
    We overview how sensorimotor experience can be operationalized for interaction scenarios in which humanoid robots acquire skills and linguistic behaviours via enacting a “form-of-life”’ in interaction games (following Wittgenstein) with humans. The enactive paradigm is introduced which provides a powerful framework for the construction of complex adaptive systems, based on interaction, habit, and experience. Enactive cognitive architectures (following insights of Varela, Thompson and Rosch) that we have developed support social learning and robot ontogeny by harnessing information-theoretic methods and raw uninterpreted sensorimotor experience to scaffold the acquisition of behaviours. The success criterion here is validation by the robot engaging in ongoing human-robot interaction with naive participants who, over the course of iterated interactions, shape the robot’s behavioural and linguistic development. Engagement in such interaction exhibiting aspects of purposeful, habitual recurring structure evidences the developed capability of the humanoid to enact language and interaction games as a successful participant

    A Framework for Exploring and Evaluating Mechanics in Human Computation Games

    Full text link
    Human computation games (HCGs) are a crowdsourcing approach to solving computationally-intractable tasks using games. In this paper, we describe the need for generalizable HCG design knowledge that accommodates the needs of both players and tasks. We propose a formal representation of the mechanics in HCGs, providing a structural breakdown to visualize, compare, and explore the space of HCG mechanics. We present a methodology based on small-scale design experiments using fixed tasks while varying game elements to observe effects on both the player experience and the human computation task completion. Finally we discuss applications of our framework using comparisons of prior HCGs and recent design experiments. Ultimately, we wish to enable easier exploration and development of HCGs, helping these games provide meaningful player experiences while solving difficult problems.Comment: 11 pages, 5 figure

    Evaluating Singleplayer and Multiplayer in Human Computation Games

    Full text link
    Human computation games (HCGs) can provide novel solutions to intractable computational problems, help enable scientific breakthroughs, and provide datasets for artificial intelligence. However, our knowledge about how to design and deploy HCGs that appeal to players and solve problems effectively is incomplete. We present an investigatory HCG based on Super Mario Bros. We used this game in a human subjects study to investigate how different social conditions---singleplayer and multiplayer---and scoring mechanics---collaborative and competitive---affect players' subjective experiences, accuracy at the task, and the completion rate. In doing so, we demonstrate a novel design approach for HCGs, and discuss the benefits and tradeoffs of these mechanics in HCG design.Comment: 10 pages, 4 figures, 2 table

    Mobile learning: benefits of augmented reality in geometry teaching

    Get PDF
    As a consequence of the technological advances and the widespread use of mobile devices to access information and communication in the last decades, mobile learning has become a spontaneous learning model, providing a more flexible and collaborative technology-based learning. Thus, mobile technologies can create new opportunities for enhancing the pupils’ learning experiences. This paper presents the development of a game to assist teaching and learning, aiming to help students acquire knowledge in the field of geometry. The game was intended to develop the following competences in primary school learners (8-10 years): a better visualization of geometric objects on a plane and in space; understanding of the properties of geometric solids; and familiarization with the vocabulary of geometry. Findings show that by using the game, students have improved around 35% the hits of correct responses to the classification and differentiation between edge, vertex and face in 3D solids.This research was supported by the Arts and Humanities Research Council Design Star CDT (AH/L503770/1), the Portuguese Foundation for Science and Technology (FCT) projects LARSyS (UID/EEA/50009/2013) and CIAC-Research Centre for Arts and Communication.info:eu-repo/semantics/publishedVersio
    corecore