332,048 research outputs found

    Biases in human behavior

    Get PDF
    The paper shows that biases in individual’s decision-making may result from the process of mental editing by which subjects produce a “representation” of the decision problem. During this process, individuals make systematic use of default classifications in order to reduce the short-term memory load and the complexity of symbolic manipulation. The result is the construction of an imperfect mental representation of the problem that nevertheless has the advantage of being simple, and yielding “satisficing” decisions. The imperfection origins in a trade-off that exists between the simplicity of representation of a strategy and his efficiency. To obtain simplicity, the strategy’s rules have to be memorized and represented with some degree of abstraction, that allow to drastically reduce their number. Raising the level of abstraction with which a strategy’s rule is represented, means to extend the domain of validity of the rule beyond the field in which the rule has been experimented, and may therefore induce to include unintentionally domains in which the rule is inefficient. Therefore the rise of errors in the mental representation of a problem may be the "natural" effect of the categorization and the identification of the building blocks of a strategy. The biases may be persistent and give rise to lock-in effect, in which individuals remain trapped in sub-optimal strategies, as it is proved by experimental results on stability of sub-optimal strategies in games like Target The Two. To understand why sub-optimal strategies, that embody errors, are locally stable, i.e. cannot be improved by small changes in the rules, it is considered Kauffman’ NK model, because, among other properties, it shows that if there are interdependencies among the rules of a system, than the system admits many sub-optimal solutions that are locally stable, i.e. cannot be improved by simple mutations. But the fitness function in NK model is a random one, while in our context it is more reasonable to define the fitness of a strategy as efficiency of the program. If we introduce this kind of fitness, then the stability properties of the NK model do not hold any longer: the paper shows that while the elementary statements of a strategy are interdependent, it is possible to achieve an optimal configuration of the strategy via mutations and in consequence the sub-optimal solutions are not locally stable under mutations. The paper therefore provides a different explanation of the existence and stability of suboptimal strategies, based on the difficulty to redefine the sub-problems that constitute the building blocks of the problem’s representation

    Machine Understanding of Human Behavior

    Get PDF
    A widely accepted prediction is that computing will move to the background, weaving itself into the fabric of our everyday living spaces and projecting the human user into the foreground. If this prediction is to come true, then next generation computing, which we will call human computing, should be about anticipatory user interfaces that should be human-centered, built for humans based on human models. They should transcend the traditional keyboard and mouse to include natural, human-like interactive functions including understanding and emulating certain human behaviors such as affective and social signaling. This article discusses a number of components of human behavior, how they might be integrated into computers, and how far we are from realizing the front end of human computing, that is, how far are we from enabling computers to understand human behavior

    Biases in human behavior

    Get PDF

    Extinction-induced variability in human behavior

    Get PDF
    Participants earned points by pressing a computer space bar (Experiment 1) or forming rectangles on the screen with the mouse (Experiment 2) under differential-reinforcement-of-low-rate schedules, followed by extinction. Variability in interresponse time (the contingent dimension) increased during extinction, as for Morgan and Lee (1996); variability in diagonal length (the noncontingent dimension, Experiment 2) did not. In Experiment 3, points were contingent on rectangle size. Rectangle size and interresponse-time (the noncontingent dimension) variability increased in extinction. There was greater variability in the contingent dimension during extinction for participants with the more varied history of reinforcement in Experiment 2 but not in Experiment 3. Overall, variability in the contingent dimension increased in extinction, but the degree of increase was affected by reinforcement history
    • 

    corecore