16 research outputs found

    Human action recognition using local spatiotemporal discriminant embedding

    Get PDF
    Human action video sequences can be considered as nonlinear dynamic shape manifolds in the space of image frames. In this paper, we address learning and classifying human actions on embedded low-dimensional manifolds. We propose a novel manifold embedding method, called Local Spatio-Temporal Discriminant Embedding (LSTDE). The discriminating capabilities of the proposed method are two-fold: (1) for local spatial discrimination, LSTDE projects data points (silhouette-based image frames of human action sequences) in a local neighborhood into the embedding space where data points of the same action class are close while those of different classes are far apart; (2) in such a local neighborhood, each data point has an associated short video segment, which forms a local temporal subspace on the embedded manifold. LSTDE finds an optimal embedding which maximizes the principal angles between those temporal subspaces associated with data points of different classes. Benefiting from the joint spatio-temporal discriminant embedding, our method is potentially more powerful for classifying human actions with similar space-time shapes, and is able to perform recognition on a frame-byframe or short video segment basis. Experimental results demonstrate that our method can accurately recognize human actions, and can improve the recognition performance over some representative manifold embedding methods, especially on highly confusing human action types. 1

    Action recognition via local descriptors and holistic features

    Get PDF

    Multimodal human machine interactions in industrial environments

    Get PDF
    This chapter will present a review of Human Machine Interaction techniques for industrial applications. A set of recent HMI techniques will be provided with emphasis on multimodal interaction with industrial machines and robots. This list will include Natural Language Processing techniques and others that make use of various complementary interfaces: audio, visual, haptic or gestural, to achieve a more natural human-machine interaction. This chapter will also focus on providing examples and use cases in fields related to multimodal interaction in manufacturing, such as augmented reality. Accordingly, the chapter will present the use of Artificial Intelligence and Multimodal Human Machine Interaction in the context of STAR applications

    Human Action Recognition Using Pyramid Vocabulary Tree

    Full text link
    Abstract. The bag-of-visual-words (BOVW) approaches are widely used in human action recognition. Usually, large vocabulary size of the BOVW is more discriminative for inter-class action classification while small one is more robust to noise and thus tolerant to the intra-class invariance. In this pape, we propose a pyramid vocabulary tree to model local spatio-temporal features, which can characterize the inter-class difference and also allow intra-class variance. Moreover, since BOVW is geometrically unconstrained, we further consider the spatio-temporal information of local features and propose a sparse spatio-temporal pyramid matching kernel (termed as SST-PMK) to compute the similarity measures between video sequences. SST-PMK satisfies the Mercer’s condition and therefore is readily integrated into SVM to perform action recognition. Experimental results on the Weizmann datasets show that both the pyramid vocabulary tree and the SST-PMK lead to a significant improvement in human action recognition. Keywords: Action recognition, Bag-of-visual-words (BOVW), Pyramid matching kernel (PMK

    View-Independent Action Recognition from Temporal Self-Similarities

    Full text link

    New human action recognition scheme with geometrical feature representation and invariant discretization for video surveillance

    Get PDF
    Human action recognition is an active research area in computer vision because of its immense application in the field of video surveillance, video retrieval, security systems, video indexing and human computer interaction. Action recognition is classified as the time varying feature data generated by human under different viewpoint that aims to build mapping between dynamic image information and semantic understanding. Although a great deal of progress has been made in recognition of human actions during last two decades, few proposed approaches in literature are reported. This leads to a need for much research works to be conducted in addressing on going challenges leading to developing more efficient approaches to solve human action recognition. Feature extraction is the main tasks in action recognition that represents the core of any action recognition procedure. The process of feature extraction involves transforming the input data that describe the shape of a segmented silhouette of a moving person into the set of represented features of action poses. In video surveillance, global moment invariant based on Geometrical Moment Invariant (GMI) is widely used in human action recognition. However, there are many drawbacks of GMI such that it lack of granular interpretation of the invariants relative to the shape. Consequently, the representation of features has not been standardized. Hence, this study proposes a new scheme of human action recognition (HAR) with geometrical moment invariants for feature extraction and supervised invariant discretization in identifying actions uniqueness in video sequencing. The proposed scheme is tested using IXMAS dataset in video sequence that has non rigid nature of human poses that resulting from drastic illumination changes, changing in pose and erratic motion patterns. The invarianceness of the proposed scheme is validated based on the intra-class and inter-class analysis. The result of the proposed scheme yields better performance in action recognition compared to the conventional scheme with an average of more than 99% accuracy while preserving the shape of the human actions in video images

    Recognition of human activities and expressions in video sequences using shape context descriptor

    Get PDF
    The recognition of objects and classes of objects is of importance in the field of computer vision due to its applicability in areas such as video surveillance, medical imaging and retrieval of images and videos from large databases on the Internet. Effective recognition of object classes is still a challenge in vision; hence, there is much interest to improve the rate of recognition in order to keep up with the rising demands of the fields where these techniques are being applied. This thesis investigates the recognition of activities and expressions in video sequences using a new descriptor called the spatiotemporal shape context. The shape context is a well-known algorithm that describes the shape of an object based upon the mutual distribution of points in the contour of the object; however, it falls short when the distinctive property of an object is not just its shape but also its movement across frames in a video sequence. Since actions and expressions tend to have a motion component that enhances the capability of distinguishing them, the shape based information from the shape context proves insufficient. This thesis proposes new 3D and 4D spatiotemporal shape context descriptors that incorporate into the original shape context changes in motion across frames. Results of classification of actions and expressions demonstrate that the spatiotemporal shape context is better than the original shape context at enhancing recognition of classes in the activity and expression domains
    corecore