8,079 research outputs found

    360 Quantified Self

    Get PDF
    Wearable devices with a wide range of sensors have contributed to the rise of the Quantified Self movement, where individuals log everything ranging from the number of steps they have taken, to their heart rate, to their sleeping patterns. Sensors do not, however, typically sense the social and ambient environment of the users, such as general life style attributes or information about their social network. This means that the users themselves, and the medical practitioners, privy to the wearable sensor data, only have a narrow view of the individual, limited mainly to certain aspects of their physical condition. In this paper we describe a number of use cases for how social media can be used to complement the check-up data and those from sensors to gain a more holistic view on individuals' health, a perspective we call the 360 Quantified Self. Health-related information can be obtained from sources as diverse as food photo sharing, location check-ins, or profile pictures. Additionally, information from a person's ego network can shed light on the social dimension of wellbeing which is widely acknowledged to be of utmost importance, even though they are currently rarely used for medical diagnosis. We articulate a long-term vision describing the desirable list of technical advances and variety of data to achieve an integrated system encompassing Electronic Health Records (EHR), data from wearable devices, alongside information derived from social media data.Comment: QCRI Technical Repor

    Portinari: A Data Exploration Tool to Personalize Cervical Cancer Screening

    Full text link
    Socio-technical systems play an important role in public health screening programs to prevent cancer. Cervical cancer incidence has significantly decreased in countries that developed systems for organized screening engaging medical practitioners, laboratories and patients. The system automatically identifies individuals at risk of developing the disease and invites them for a screening exam or a follow-up exam conducted by medical professionals. A triage algorithm in the system aims to reduce unnecessary screening exams for individuals at low-risk while detecting and treating individuals at high-risk. Despite the general success of screening, the triage algorithm is a one-size-fits all approach that is not personalized to a patient. This can easily be observed in historical data from screening exams. Often patients rely on personal factors to determine that they are either at high risk or not at risk at all and take action at their own discretion. Can exploring patient trajectories help hypothesize personal factors leading to their decisions? We present Portinari, a data exploration tool to query and visualize future trajectories of patients who have undergone a specific sequence of screening exams. The web-based tool contains (a) a visual query interface (b) a backend graph database of events in patients' lives (c) trajectory visualization using sankey diagrams. We use Portinari to explore diverse trajectories of patients following the Norwegian triage algorithm. The trajectories demonstrated variable degrees of adherence to the triage algorithm and allowed epidemiologists to hypothesize about the possible causes.Comment: Conference paper published at ICSE 2017 Buenos Aires, at the Software Engineering in Society Track. 10 pages, 5 figure

    Wearable Computing for Health and Fitness: Exploring the Relationship between Data and Human Behaviour

    Get PDF
    Health and fitness wearable technology has recently advanced, making it easier for an individual to monitor their behaviours. Previously self generated data interacts with the user to motivate positive behaviour change, but issues arise when relating this to long term mention of wearable devices. Previous studies within this area are discussed. We also consider a new approach where data is used to support instead of motivate, through monitoring and logging to encourage reflection. Based on issues highlighted, we then make recommendations on the direction in which future work could be most beneficial

    Aerospace Medicine and Biology: A continuing bibliography with indexes (supplement 153)

    Get PDF
    This bibliography lists 175 reports, articles, and other documents introduced into the NASA scientific and technical information system in March 1976
    • …
    corecore