7 research outputs found

    Haptic communication to enhance collaboration in virtual environments

    Get PDF
    International audienceMotivation – To study haptic communication in collaborative virtual environments. Research approach – An experimental study was conducted, in which 60 students were asked to perform in dyads a shared manual task after a training period. Findings/Design – The results show that haptic communication can influence the common frame of reference development in a shared manual task. Research limitations/Implications – Deeper verbalization analyses are needed to evaluate the common frame of reference development. Originality/Value – This study highlights haptic interactions importance when designing virtual environment that support shared manual tasks. Take away message – Haptic communication, combined with visual and verbal communication, enriches interactions in virtual environments

    WYFIWIF: A Haptic Communication Paradigm For Collaborative Motor Skills Learning

    Get PDF
    International audienceMotor skills transfer is a challenging issue for many applications such as surgery, design and industry. In order to design virtual environments that support motor skills learning, a deep understanding of humans' haptic interactions is required. To ensure skills transfer, experts and novices need to collaborate. This requires the construction of the common frame of reference between the teacher and the learner in order to understand each other. In this paper, human-human haptic collaboration is investigated in order to understand how haptic information is exchanged. Furthermore, WYFIWIF (What You Feel Is What I Feel), a haptic communication paradigm is introduced. This paradigm is based on a hand guidance metaphor. The paradigm helps operators to construct an efficient common frame of reference by allowing a direct haptic communication. A learning virtual environment is used to evaluate this haptic communication paradigm. Hence, 60 volunteer students performed a needle insertion learning task. The results of this experiment show that, compared to conventional methods, the learning method based on haptic communication improves the novices' performance in such a task. We conclude that the WYFIWIF paradigm facilitate expert-novice haptic collaboration to teach motor skills

    WYFIWIF: A Haptic Communication Paradigm For Collaborative Motor Skills Learning

    Get PDF
    International audienceMotor skills transfer is a challenging issue for many applications such as surgery, design and industry. In order to design virtual environments that support motor skills learning, a deep understanding of humans' haptic interactions is required. To ensure skills transfer, experts and novices need to collaborate. This requires the construction of the common frame of reference between the teacher and the learner in order to understand each other. In this paper, human-human haptic collaboration is investigated in order to understand how haptic information is exchanged. Furthermore, WYFIWIF (What You Feel Is What I Feel), a haptic communication paradigm is introduced. This paradigm is based on a hand guidance metaphor. The paradigm helps operators to construct an efficient common frame of reference by allowing a direct haptic communication. A learning virtual environment is used to evaluate this haptic communication paradigm. Hence, 60 volunteer students performed a needle insertion learning task. The results of this experiment show that, compared to conventional methods, the learning method based on haptic communication improves the novices' performance in such a task. We conclude that the WYFIWIF paradigm facilitate expert-novice haptic collaboration to teach motor skills

    Influence of Haptic Communication on a Shared Manual Task in a Collaborative Virtual Environment

    Get PDF
    International audienceWith the advent of new haptic feedback devices, researchers are giving serious consideration to the incorporation of haptic communication in collaborative virtual environments. For instance, haptic interactions based tools can be used for medical and related education whereby students can train in minimal invasive surgery using virtual reality before approaching human subjects. To design virtual environments that support haptic communication, a deeper understanding of humans' haptic interactions is required. In this paper, human's haptic collaboration is investigated. A collaborative virtual environment was designed to support performing a shared manual task. To evaluate this system, 60 medical students participated to an experimental study. Participants were asked to perform in dyads a needle insertion task after a training period. Results show that compared to conventional training methods, a visual-haptic training improves user's collaborative performance. In addition, we found that haptic interaction influences the partners' verbal communication when sharing haptic information. This indicates that the haptic communication training changes the nature of the users' mental representations. Finally, we found that haptic interactions increased the sense of copresence in the virtual environment: haptic communication facilitates users' collaboration in a shared manual task within a shared virtual environment. Design implications for including haptic communication in virtual environments are outlined

    Haptic communication to support biopsy procedures learning in virtual environments

    Get PDF
    International audienceIn interventional radiology, physicians require high haptic sensitivity and fine motor skills development because of the limited real-time visual feedback of the surgical site. The transfer of this type of surgical skill to novices is a challenging issue. This paper presents a study on the design of a biopsy procedure learning system. Our methodology, based on a task-centered design approach, aims to bring out new design rules for virtual learning environments. A new collaborative haptic training paradigm is introduced to support human-haptic interaction in a virtual environment. The interaction paradigm supports haptic communication between two distant users to teach a surgical skill. In order to evaluate this paradigm, a user experiment was conducted. Sixty volunteer medical students participated in the study to assess the influence of the teaching method on their performance in a biopsy procedure task. The results show that to transfer the skills, the combination of haptic communication with verbal and visual communications improves the novices' performance compared to conventional teaching methods. Furthermore, the results show that, depending on the teaching method, participants developed different needle insertion profiles. We conclude that our interaction paradigm facilitates expert-novice haptic communication and improves skills transfer; and new skills acquisition depends on the availability of different communication channels between experts and novices. Our findings indicate that the traditional fellowship methods in surgery should evolve to an off-patient collaborative environment that will continue to support visual and verbal communication, but also haptic communication, in order to achieve a better and more complete skills training

    Haptic communication to support biopsy procedures learning in virtual environments

    Get PDF
    International audienceIn interventional radiology, physicians require high haptic sensitivity and fine motor skills development because of the limited real-time visual feedback of the surgical site. The transfer of this type of surgical skill to novices is a challenging issue. This paper presents a study on the design of a biopsy procedure learning system. Our methodology, based on a task-centered design approach, aims to bring out new design rules for virtual learning environments. A new collaborative haptic training paradigm is introduced to support human-haptic interaction in a virtual environment. The interaction paradigm supports haptic communication between two distant users to teach a surgical skill. In order to evaluate this paradigm, a user experiment was conducted. Sixty volunteer medical students participated in the study to assess the influence of the teaching method on their performance in a biopsy procedure task. The results show that to transfer the skills, the combination of haptic communication with verbal and visual communications improves the novices' performance compared to conventional teaching methods. Furthermore, the results show that, depending on the teaching method, participants developed different needle insertion profiles. We conclude that our interaction paradigm facilitates expert-novice haptic communication and improves skills transfer; and new skills acquisition depends on the availability of different communication channels between experts and novices. Our findings indicate that the traditional fellowship methods in surgery should evolve to an off-patient collaborative environment that will continue to support visual and verbal communication, but also haptic communication, in order to achieve a better and more complete skills training

    Synthèse et commande de dispositifs haptiques pour la communication à distance : application à une interface robotique anthropomorphe pour la poignée de main

    Get PDF
    Les systèmes de communication à distance entre les individus ont évolué significativement au cours des dernières années, de concert avec les innovations technologiques caractérisant notre société. Afin de réaliser une communication réaliste et intuitive, le système doit être capable de stimuler les sens qui sont habituellement impliqués dans l’interaction entre deux personnes, tels que l’ouïe, la vision et le toucher. Le téléphone a représenté une innovation importante dans les communications en permettant enfin de pouvoir parler avec son interlocuteur directement, sans devoir employer un signal codé comme le code Morse. Cette communication a été améliorée en introduisant les appels vidéo, lesquels permettent non seulement d’entendre l’interlocuteur mais aussi de le voir. Plusieurs recherches ont cependant démontré que le sens du toucher joue également un rôle très important dans les interactions entre individus. Une technologie relativement récente, connue comme technologie haptique, aborde le problème de la transmission du sens du toucher à distance, dans le but de mettre en oeuvre une communication complète et encore plus réaliste. Cette technologie a également d’autres applications tout aussi importantes. À titre d’exemple, l’haptique est utilisée dans le domaine de la réadaptation et de l’apprentissage guidé de personnes ayant des déficiences motrices. Cette thèse porte sur le développement de la technologie haptique pour la communication à distance entre deux individus. L’objectif final est la réalisation d’un système permettant aux deux utilisateurs de se serrer la main à distance. Afin d’atteindre cet objectif, nous devons aborder deux problèmes différents, tels que la conception d’une interface capable de reproduire le mouvement désiré et l’implémentation d’une loi de commande garantissant le comportement correct de cette interface. Toujours dans le cadre de l’interaction à distance par le biais d’un dispositif haptique, une interface pour l’apprentissage de l’écriture manuelle est également présentée. Cette application permet de démontrer, entre autres, l’importance d’un signal haptique dans l’interaction humain-humain et son influence sur les utilisateurs.Remote communication systems have significantly improved in the course of the recent years, in concert with technological innovations of our society. In order to realize a realistic and intuitive communication, the system must activate the part of the sensory system that is normally stimulated in an interaction between two people, i.e., the auditory system, the visual system and the haptic perception system, which concerns touch. The telephone represented an innovating communication system. It allowed to directly talk to the interlocutor without any need for a coded signal such as the Morse code. Remote communications have been further improved with the introduction of the video calls, which allow people not only to talk to but also to see each other. Several researches proved that the sense of touch plays a crucial role in social interactions. Haptic technology, which is relatively recent, approaches the problems related to the perception and the transmission of touch. One objective is to render remote communications even more complete and realistic. Haptic technology is also used in other important applications such as, for instance, rehabilitation and guided learning process of people with movement impairments. This thesis concerns the development of the haptic technology devoted to the implementation of remote communication systems. The final objective is to realize a teleoperation system which allows two users to remotely shake hands. In order to achieve this objective, two main issues must be faced : the design of a haptic interface capable of reproducing the required movement and the implementation of a control law which guarantees the proper response of such an interface. In the framework of a remote interaction via a haptic device, an interface for the training and assessment of handwriting capabilities is also presented. The latter application demonstrates the importance of haptic signals in a remote human-human interaction and its influence on the users
    corecore