2,085 research outputs found

    Acquisition and distribution of synergistic reactive control skills

    Get PDF
    Learning from demonstration is an afficient way to attain a new skill. In the context of autonomous robots, using a demonstration to teach a robot accelerates the robot learning process significantly. It helps to identify feasible solutions as starting points for future exploration or to avoid actions that lead to failure. But the acquisition of pertinent observationa is predicated on first segmenting the data into meaningful sequences. These segments form the basis for learning models capable of recognising future actions and reconstructing the motion to control a robot. Furthermore, learning algorithms for generative models are generally not tuned to produce stable trajectories and suffer from parameter redundancy for high degree of freedom robots This thesis addresses these issues by firstly investigating algorithms, based on dynamic programming and mixture models, for segmentation sensitivity and recognition accuracy on human motion capture data sets of repetitive and categorical motion classes. A stability analysis of the non-linear dynamical systems derived from the resultant mixture model representations aims to ensure that any trajectories converge to the intended target motion as observed in the demonstrations. Finally, these concepts are extended to humanoid robots by deploying a factor analyser for each mixture model component and coordinating the structure into a low dimensional representation of the demonstrated trajectories. This representation can be constructed as a correspondence map is learned between the demonstrator and robot for joint space actions. Applying these algorithms for demonstrating movement skills to robot is a further step towards autonomous incremental robot learning

    Segmenting Motion Capture Data Using a Qualitative Analysis

    Get PDF
    Many interactive 3D games utilize motion capture for both character animation and user input. These applications require short, meaningful sequences of data. Manually producing these segments of motion capture data is a laborious, time-consuming process that is impractical for real-time applications. We present a method to automatically produce semantic segmentations of general motion capture data by examining the qualitative properties that are intrinsic to all motions, using Laban Movement Analysis (LMA). LMA provides a good compromise between high-level semantic features, which are difficult to extract for general motions, and lowlevel kinematic features, which often yield unsophisticated segmentations. Our method finds motion sequences which exhibit high output similarity from a collection of neural networks trained with temporal variance. We show that segmentations produced using LMA features are more similar to manual segmentations, both at the frame and the segment level, than several other automatic segmentation methods

    The Meaning of Action:a review on action recognition and mapping

    Get PDF
    In this paper, we analyze the different approaches taken to date within the computer vision, robotics and artificial intelligence communities for the representation, recognition, synthesis and understanding of action. We deal with action at different levels of complexity and provide the reader with the necessary related literature references. We put the literature references further into context and outline a possible interpretation of action by taking into account the different aspects of action recognition, action synthesis and task-level planning

    Video Compressive Sensing for Dynamic MRI

    Full text link
    We present a video compressive sensing framework, termed kt-CSLDS, to accelerate the image acquisition process of dynamic magnetic resonance imaging (MRI). We are inspired by a state-of-the-art model for video compressive sensing that utilizes a linear dynamical system (LDS) to model the motion manifold. Given compressive measurements, the state sequence of an LDS can be first estimated using system identification techniques. We then reconstruct the observation matrix using a joint structured sparsity assumption. In particular, we minimize an objective function with a mixture of wavelet sparsity and joint sparsity within the observation matrix. We derive an efficient convex optimization algorithm through alternating direction method of multipliers (ADMM), and provide a theoretical guarantee for global convergence. We demonstrate the performance of our approach for video compressive sensing, in terms of reconstruction accuracy. We also investigate the impact of various sampling strategies. We apply this framework to accelerate the acquisition process of dynamic MRI and show it achieves the best reconstruction accuracy with the least computational time compared with existing algorithms in the literature.Comment: 30 pages, 9 figure

    Semantic Segmentation of Motion Capture Using Laban Movement Analysis

    Get PDF
    Many applications that utilize motion capture data require small, discrete, semantic segments of data, but most motion capture collection processes produce long sequences of data. The smaller segments are often created from the longer sequences manually. This segmentation process is very laborious and time consuming. This paper presents an automatic motion capture segmentation method based on movement qualities derived from Laban Movement Analysis (LMA). LMA provides a good compromise between high-level semantic features, which are difficult to extract for general motions, and low-level kinematic features which, often yield unsophisticated segmentations. The LMA features are computed using a collection of neural networks trained with temporal variance in order to create a classifier that is more robust with regard to input boundaries. The actual segmentation points are derived through simple time series analysis of the LMA features

    SEGMENTATION, RECOGNITION, AND ALIGNMENT OF COLLABORATIVE GROUP MOTION

    Get PDF
    Modeling and recognition of human motion in videos has broad applications in behavioral biometrics, content-based visual data analysis, security and surveillance, as well as designing interactive environments. Significant progress has been made in the past two decades by way of new models, methods, and implementations. In this dissertation, we focus our attention on a relatively less investigated sub-area called collaborative group motion analysis. Collaborative group motions are those that typically involve multiple objects, wherein the motion patterns of individual objects may vary significantly in both space and time, but the collective motion pattern of the ensemble allows characterization in terms of geometry and statistics. Therefore, the motions or activities of an individual object constitute local information. A framework to synthesize all local information into a holistic view, and to explicitly characterize interactions among objects, involves large scale global reasoning, and is of significant complexity. In this dissertation, we first review relevant previous contributions on human motion/activity modeling and recognition, and then propose several approaches to answer a sequence of traditional vision questions including 1) which of the motion elements among all are the ones relevant to a group motion pattern of interest (Segmentation); 2) what is the underlying motion pattern (Recognition); and 3) how two motion ensembles are similar and how we can 'optimally' transform one to match the other (Alignment). Our primary practical scenario is American football play, where the corresponding problems are 1) who are offensive players; 2) what are the offensive strategy they are using; and 3) whether two plays are using the same strategy and how we can remove the spatio-temporal misalignment between them due to internal or external factors. The proposed approaches discard traditional modeling paradigm but explore either concise descriptors, hierarchies, stochastic mechanism, or compact generative model to achieve both effectiveness and efficiency. In particular, the intrinsic geometry of the spaces of the involved features/descriptors/quantities is exploited and statistical tools are established on these nonlinear manifolds. These initial attempts have identified new challenging problems in complex motion analysis, as well as in more general tasks in video dynamics. The insights gained from nonlinear geometric modeling and analysis in this dissertation may hopefully be useful toward a broader class of computer vision applications
    corecore