
University of Pennsylvania
ScholarlyCommons

Center for Human Modeling and Simulation Department of Computer & Information Science

2007

Semantic Segmentation of Motion Capture Using
Laban Movement Analysis
Durell Bouchard
University of Pennsylvania, durell@cis.upenn.edu

Norman I. Badler
University of Pennsylvania, badler@seas.upenn.edu

Follow this and additional works at: http://repository.upenn.edu/hms

Part of the Engineering Commons, and the Graphics and Human Computer Interfaces
Commons

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/hms/211
For more information, please contact repository@pobox.upenn.edu.

Recommended Citation
Bouchard, D., & Badler, N. I. (2007). Semantic Segmentation of Motion Capture Using Laban Movement Analysis. Proceedings of the
7th International Conference on Intelligent Virtual Agents, 4722 37-44. http://dx.doi.org/10.1007/978-3-540-74997-4_4

CORE Metadata, citation and similar papers at core.ac.uk

Provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76389555?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fhms%2F211&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/hms?utm_source=repository.upenn.edu%2Fhms%2F211&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis?utm_source=repository.upenn.edu%2Fhms%2F211&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/hms?utm_source=repository.upenn.edu%2Fhms%2F211&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=repository.upenn.edu%2Fhms%2F211&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/146?utm_source=repository.upenn.edu%2Fhms%2F211&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/146?utm_source=repository.upenn.edu%2Fhms%2F211&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1007/978-3-540-74997-4_4
http://repository.upenn.edu/hms/211
mailto:repository@pobox.upenn.edu


Semantic Segmentation of Motion Capture Using Laban Movement
Analysis

Abstract
Many applications that utilize motion capture data require small, discrete, semantic segments of data, but
most motion capture collection processes produce long sequences of data. The smaller segments are often
created from the longer sequences manually. This segmentation process is very laborious and time consuming.
This paper presents an automatic motion capture segmentation method based on movement qualities derived
from Laban Movement Analysis (LMA). LMA provides a good compromise between high-level semantic
features, which are difficult to extract for general motions, and low-level kinematic features which, often yield
unsophisticated segmentations. The LMA features are computed using a collection of neural networks trained
with temporal variance in order to create a classifier that is more robust with regard to input boundaries. The
actual segmentation points are derived through simple time series analysis of the LMA features.
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Abstract. Many applications that utilize motion capture data require
small, discrete, semantic segments of motion capture data, but most
motion capture collection processes produces long sequences of motion
capture data. The smaller segments are often created from the longer se-
quences manually. This segmentation process is very laborious and time
consuming. This paper presents an automatic motion capture segmenta-
tion method based on movement qualities derived from Laban Movement
Analysis (LMA). LMA provides a good compromise between high-level
semantic features which are difficult to extract for general motions and
low-level kinematic features which often yield unsophisticated segmen-
tations. The LMA features are computed using a collection of neural
networks trained with temporal variance in order to create a classifier
that is more robust with regard to input boundaries. The actual segmen-
tation points are derived through simple time series analysis of the LMA
features over.

Key words: human motion, motion capture, motion segmentation, LMA

1 Introduction

The increasing popularity of 3D computer generated animation in television,
movies, and video games coupled with the decreasing cost of motion capture
production are driving a need for more sophisticated tools to process and ana-
lyze motion capture data. Many of these motion capture tools, such as gesture
recognition, gait analysis, and motion retargeting, require small, discrete, se-
mantically sophisticated segments of input motion capture in order to function
properly. However, in order to create quality motion capture data efficiently,
capture sessions typically produce long streams of motion capture data. The
solution is to preprocess the long motion capture data stream by breaking it up
into short segments that are appropriate for an analysis tool. This process is
often done manually, but it is a very laborious and time consuming process. A
better solution is to create tools that automate the segmentation process.

Automated segmentation is also more deterministic than manual segmenta-
tion due to low interannotator and intra-annotator agreement in manual segmen-
tation. An automatic segmentation program will produce the same segmentation
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given the same input motion capture. Different people given the same motion
capture data, on the other hand, will produce different segmentations. In addi-
tion a person will produce a different segmentation given the same input motion
capture data. Figure 1 shows the result of having one person segment 3 different
groups of motion capture data 6 times each. The median of each segment bound-
ary was computed and then the distance of each boundary from the median was
computed and graphed as a histogram. The result is a standard deviation of 15.4
frames or about a half a second. The annotator agreements can be increased if
the motion capture sample rate is decreased, however, it will also introduce shift
error into the segment points. The performance of some classifiers is dependent
on the selection of segment points. Figure 2 shows the effect of changing the
segment boundaries on the performance of a neural net. A shift of five frames
of the segment boundaries can change the error rate from 15% to 55%. Deter-
ministic segmentation, and therefore automated segmentation, can improve the
performance of classifiers.
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Fig. 1. Manual Segmentation Bound-
ary Deviance Histogram
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Fig. 2. Classifier Performance

To segment motion capture data is to produce a collection of smaller motion
capture data segments that consist of contiguous portions of the original mo-
tion capture data. A semantic segmentation is a high-level segmentation, where
segments correlate to a semantic labeling of the motion, such as throwing a ball
hard. A kinematic segmentation is a low-level segmentation, where segments
correlate to a kinematic description of a motion, such as a high velocity sagittal
motion. The generality of motion capture data refers to the diversity of mo-
tions. General motion capture consists of any motion that can be performed by
a person. Motion capture that is not general is limited to classes of motions
such as locomotion or dancing. Current methods of automatic motion capture
segmentation tend to either be effective for general motions, but do not produce
semantic segmentations, or produce semantic segmentations, but are not useful
for general motions. The goal of automatic motion capture segmentation is to
produce semantic segmentation of general motion capture data.
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A näıve solution to the segmentation problem is to create a classifier and
apply it to all possible segments. Any segments that are properly classified are
considered segments. There are multiple problems with this approach. The first
is that it would be extremely slow. The second is that it requires an extremely
sophisticated classifier. The classifier must be robust enough to take poorly seg-
mented data as an input. This is difficult because the performance of a classifier
is dependent on the quality of the segmentation of its input. The problem is
a paradox where recognition requires segmentation and segmentation requires
recognition.

2 Related Work

Many motion capture segmentation methods are based on changes in low-level
kinematic features. Fod et al. [3] implement two different segmentation methods
that utilize angular velocity in four different degrees of freedom in the arm. The
first method chooses segments such that at least two degrees of freedom have zero
velocity within three milliseconds of both the beginning and end of every seg-
ment. The second method tracks the sum of the four degrees of freedom’s angular
velocity and determines segment boundaries when the value drops below an ex-
periment based threshold. Osaki et al. [8] and Shiratori et al. [10] also use velocity
in segmentation calculation. They calculate the linear velocity of a hand relative
to the waist. Segment boundaries are velocity local minima with the added con-
straints that initial and ending velocity must be under some threshold, and the
maximal velocity must exceed some threshold. Zhao and Badler [14] calculate
segment boundaries when hand linear acceleration zero crosses and curvature is
above some threshold. Wang et al. [12] determine segment boundaries as when
the velocity of a hand is below a threshold at the same time as the curvature of
the hand is above a threshold. Jenkins and Matarić [4, 5] use a method called
kinematic centroid segmentation. The segments are calculated in-line by finding
a local maximum of the distance between the centroid of an arm’s markers for the
first frame and the centroid of each following frame. These kinematic methods
are extremely efficient, however, they produce simple low-level segmentations.

There are motion capture segmentation methods that produce more high-
level segmentations than the kinematic methods above by using techniques from
time series database analysis. Barbič et al. [1] implement two different segmen-
tation methods that are based on data compression. The first method segments
where the projection error resulting from Principal Component Analysis (PCA)
increases on incrementally larger segments of motion capture data. The second
method segments by tracking changes in the distance of fitting a small segment
of motion capture data to a Gaussian distribution model of the frames that pre-
cede the segment. Li et al. [13] use a similar method where segments are chosen
such that they can be represented with the fewest number of linear dynamic
systems. Another data analysis method, clustering, is also useful for segmenting
motion capture data. When clustering is applied to motion capture segmentation
the assumption is that frames of neighboring segments belong to separate clus-
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ters. Barbič et al. [1] employ expectation minimization to estimate the Gaussian
Mixture Model (GMM) that corresponds to a cluster, while Lee and Elgammal
[7] use k-means to estimate the GMM. These time series analysis based methods
produce more high-level segmentations than the kinematic methods produce,
but they do not utilize semantic content of the motion on which they operate.

It is possible to capture some of the complexity and flexibility of decision
making present in manual motion capture segmentation by using supervised
learning. Kahol et al. [6] use a näıve Bayesian classifier in order to derive chore-
ographer segmentation profiles of dance motion capture sequences. Starner and
Pentland [11] and Bregler [2] implement implicit segmentation through the use
of Hidden Markov Models (HMM) trained with manually segmented data. These
learning based segmentation methods are difficult to implement for general mo-
tion. In the above two examples Kahol et al. perform tests on motion capture
of dance, Starner and Pentland to sign language gestures, and Bregler to gait.
Creating a general classifier for all motions is difficult because as the class of
motions that can potentially be classified grows so does the number of training
examples needed. In the case of a truly general classifier the number of training
motions would be enormous.

3 Hypothesis and Model

The learning based segmentation methods have the ability to create semantic
segmentations, but the implementation is not feasible for general motion capture
data. The above methods avoid this problem by eliminating the requirement
of general motion capture and using a class of motions, such as dance, sign
language, and gait. A different solution would be to use a classifier that operates
on a smaller set of classes, but is effective on general motions. In order for a
segmentation based on this type of classifier to be useful the subset of classes
must be present in all motions, significant in meaning, and practical to classify.

A classification that fits these critera is Laban Movement Analysis (LMA)
Effort classification. LMA is a rigorous system of movement study which de-
scribes motion as a combination of four components: Body, Effort, Shape, and
Space. Body, Shape, and Space define what motion is performed while Effort
describes how a motion is performed. The Effort component is related to a per-
son’s intention and is itself composed of four different motion parameters: Space,
Weight, Time, and Flow. Each parameter is a continuum between diametric ex-
tremes. The extremes of the four Effort parameters are summarized in Table 3.
The Effort of any motion can be described as four values on the four different
Effort dimensions.

4 Method

The advantage of LMA Effort as a basis for motion capture segmentation is that
it is more meaningful than kinematic features, so it has the potential to create
more semantic segmentations, and it is easier to compute for general motions
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Table 1. LMA Effort Elements

Space Time Weight Flow

Indulging Indirect Sustained Light Free
Condensing Direct Sudden Strong Bound

than semantic features, so it can be applied to general motion. In order to test
the hypothesis that LMA Effort is useful in segmenting general motion capture,
a classifier must be constructed and used to segment a collection of general
motions.

4.1 LMA Effort Classifier

The classifier implemented is based on the LMA classification work of Zhao
and Badler [14], and is a set of four neural networks, one for each LMA Effort
parameter, which outputs three values between 0 and 1 for indulging, neutral,
and condensing. The first step in creating the neural networks was to collect
the training motion capture data. In order to accomplish this two LMA experts
assisted in creating a repertoire of motions that span a set of primitive motions
defined in LMA. The motions are summarized in Table 4.1. Each of the 12 mo-
tions was performed in 12 times in order to isolate and emphasize the 4 different
LMA Effort parameters, Space, Time Weight, and Flow, and at 3 intensities,
condensing, neutral, and indulging. In total 288 different motions were captured
using Ascension Technology’s active optical motion capture system, the ReAc-
tor. The system tracks 30 markers at 30 Hz. with an accuracy of 3 mm. The
288 motions were segmented using a hybrid of kinematic and manual segmen-
tation, where manually selected segment points were limited to those with high
curvature to increase the consistency of the segmentation.

In order to improve the performance of the neural networks kinematic fea-
tures were extracted from the segmented motion capture data. The first step in
this process was to normalize the motion capture data as a means to account
for the difference in size and orientation of the two LMA experts. The marker
locations of every frame of every segment of motion capture were translated,
rotated, and scaled. They were translated such that the sternum marker was
located at the origin and rotated about the vertical axis such that the saggital
planes were aligned. The marker locations were scaled by a factor which was es-
timated by averaging distances between joints that remain fairly constant such
as the elbow and the shoulder. In order to abstract the motions from positional
information the kinematic time series in Table 4(b) were computed for each of
the markers in Table 4(a). Experiments showed that some subsections of these
kinematic time series were more important than others. For example the Flow
parameter is very dependent on the end of a motion, while the Time parameter
is sensitive to the beginning of the motion. Therefore, several weighted masks,
summarized in Table 4(c), were applied to each kinematic time series. Lastly the
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Table 2. Neural Network Training Motions

Direction Space Form

forward mid-reach spoke-like
downward mid-reach spoke-like
upward mid-reach spoke-like
downward near-reach spoke-like
horizontal mid-left arc-like
horizontal mid-right circular
diagonal mid-left arc-like
diagonal mid-right arc-like
sagittal mid-reach arc-like
sagittal mid-reach spoke-like
backward far-reach circular
“glide” far-reach transverse

set of scalar kinematic features in Table 4(d) were computed from each of the
weighted time series.

In total 4788 different features were calculated. This was still too many fea-
tures for a an effective neural network, and many of the features were redundant
or ineffective. In order to select the most salient features a method from Ruck
et al. [9] was implemented. The method associates feature saliency with changes
in the weights of the hidden layers of the neural networks during training. The
result is a numerical score of the saliency of every feature. A sorted plot of the
computed saliency values, Fig. 3, shows an exponential drop around the 100
most salient features. However, the 100 most salient features do not necessarily
correlate to the best performing neural net. Figure 4 is a plot of the performance
of the four neural networks versus an increasing number of the most salient fea-
tures. This plot demonstrates that when the number of training samples is fixed
the neural network performance can be degraded if there are too many inputs.
The apexes of the curves in Fig. 4 were used to determine the number of inputs
for each neural network. The Space, Time, Weight, and Flow neural networks
had 84, 72, 75, and 57 inputs respectively. In order to further optimize the per-
formance of the neural networks PCA was performed on these inputs, in order
to create a set of inputs with 95% variance, which reduced the number of inputs
to 36, 23, 33, and 25. Finally, the optimum number of hidden layer units was
determined by performing PCA on the hidden layer weights.

The average performance of the neural networks is summarized in Table 4.1.
The neural networks performed more poorly than expected on data that they
were not trained on, due to error induced by manual segmentation boundary
shift in the test data. When the neural networks are tested on the data they were
trained on there is no perturbation in the segment boundary points. However,
as was demonstrated in the introduction, the performance of a motion capture
classifier is very sensitive to test data boundary points, and manual segmentation
produces irregular boundary points. Experiments showed that the majority of
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Table 4. Neural Network Input Features

(a)

Markers

right wrist
right elbow
right shoulder
sternum
right arm centroid

(b)

Kinematic Time Series

displacement
velocity
acceleration
zero crossing
distance from start
distance from end
distance from sternum
distance from shoulder
curvature
torsion

(c)

Weight

front
back
center
even
zero crossing boundary

(d)

Scalar

average
maximum
minimum
sum
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boundary shift error occurs within a window of 11 frames. In order to minimize
the error due to segment boundary inconsistencies, 121 sets of neural nets were
trained with motion capture data with all permutations of boundary points
shifted at most 5 frames. Then every test motion capture segment’s boundaries
were shifted in the same 121 ways and the output of the 121 neural networks was
summed for a final output. The result, summarized in Table 4.1, is a reduction
in the difference between training data error and test data error from 26.2% to
4.3%.

Table 4. Neural Network Average Percent Correct

Static Boundary Variant Boundary
Training Data Test Data Training Data Test Data

91.2% 65.0% 92.3% 88.0%

4.2 Segmentation Determination

Once the neural networks were trained the final step was to incorporate them
into a segmentation scheme. Using the neural networks to find segments by
exhaustive search yielded many false positives. In a 25 second test motion capture
sequence, that consists of a person repeatedly throwing a ball, the result of
applying the neural networks to all segments between 2/3 and 3 1/3 seconds is
26,493 segments. The large number of segments is because segments with similar
start and end frames produce similar neural network outputs, and therefore if
one segment makes a good segment its neighboring segments will as well. This
local similarity can be taken advantage of by assuming that a frame that is
a good segment boundary will appear in many other good segments. This is
accomplished by producing a histogram of the 26,493 segment boundaries where
the number of bins is the number of frames in the 25 second sequence. The
histogram of the test motion capture sequence is shown in Fig. 5(a). There
is a strong correlation between the peaks of this histogram and the peaks of
the histogram in Fig. 5(b), which is of 20 manual segmentations of the same
sequence.

Two different methods were implemented in order to convert the segment
histogram into segment boundaries. The first method finds peaks in the neu-
ral network output histogram of a minimum size by using a pair of dynamic
thresholds. A dynamic threshold is calculated for every frame of the sequence
as the average of its neighboring 100 frames. The upper and lower thresholds
are calculated by shifting the dynamic threshold up and down by half of the
experimentally determined minimum peak size. The upper and lower thresholds
for the test sequence are shown as curves in Fig. 6(a). Segment boundares are
calculated as the maximum histogram value in between the points where the
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Fig. 5. Neural Network Output and Segmentation Correlation

histogram transitions from below the lower threshold to above the upper thresh-
old to below the lower threshold again. Figure 6(b) shows a histogram of the
segment boundaries that were calculated via this method from the test sequence.
This correlates well to the manual segmentation of the test sequence in Fig. 6(c).
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Fig. 6. Threshold Segmentation

The second method for calculating the segment boundaries from the segment
histogram uses local maxima and minima. The method begins by calculating all
of the local maxima and minima of the segment histogram. The local maxima
and minima of the test sequence are represented as circles in Fig. 7(a). The local
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maxima and minima are then pruned such that the distance in height between
two consecutive points must be above some experimentally determined threshold.
The lines in Fig. 7(a) connect all of the points that remain after the pruning
process is performed on the test sequence. The segment boundary points are
the same as local maximum points. Figure 7(b) shows a histogram of segment
boundaries calculated via this method from the test sequence. This correlates
well to the manual segmentation of the test sequence in Fig. 7(c).
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5 Analysis

Both of the above methods for calculating segment boundaries produced all of the
same segment points as manual segmentation in the 25 second test sequence. The
segment points are listed in Table 5. The average distance between automatically
calculated segment points and the manual segment points is 8.5 frame for the
threshold method and 9 frames for the local maximum method. In experiments
with manual segmentation it was found that segment points varied by 9.2 frames
on average. So the error of the automatically generated segment points for this
example is within the error that is produced by manual segmentation.

The preliminary results demonstrate that using LMA Effort parameters as
the basis for segmenting produces results that are on par with manual segmen-
tation in at least this one example. What needs to be shown is that this method
is still effective on longer and more general sets of motions. The performance
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should also be evaluated by comparing it to existing methods when integrated
into real applications.

Table 5. Segmentation Results

Boundary Number 1 2 3 4 5 6 7 8

Manual Boundaries 91 170 298 355 394 481 545 695
Threshold Boundaries 82 162 295 348 404 474 561 687
Local Maximum Boundaries 81 161 294 347 403 473 560 686
Threshold Difference 9 8 3 7 10 7 16 8
Local Maximum Difference 10 9 4 8 9 8 15 9
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