64,781 research outputs found

    Time-Contrastive Networks: Self-Supervised Learning from Video

    Full text link
    We propose a self-supervised approach for learning representations and robotic behaviors entirely from unlabeled videos recorded from multiple viewpoints, and study how this representation can be used in two robotic imitation settings: imitating object interactions from videos of humans, and imitating human poses. Imitation of human behavior requires a viewpoint-invariant representation that captures the relationships between end-effectors (hands or robot grippers) and the environment, object attributes, and body pose. We train our representations using a metric learning loss, where multiple simultaneous viewpoints of the same observation are attracted in the embedding space, while being repelled from temporal neighbors which are often visually similar but functionally different. In other words, the model simultaneously learns to recognize what is common between different-looking images, and what is different between similar-looking images. This signal causes our model to discover attributes that do not change across viewpoint, but do change across time, while ignoring nuisance variables such as occlusions, motion blur, lighting and background. We demonstrate that this representation can be used by a robot to directly mimic human poses without an explicit correspondence, and that it can be used as a reward function within a reinforcement learning algorithm. While representations are learned from an unlabeled collection of task-related videos, robot behaviors such as pouring are learned by watching a single 3rd-person demonstration by a human. Reward functions obtained by following the human demonstrations under the learned representation enable efficient reinforcement learning that is practical for real-world robotic systems. Video results, open-source code and dataset are available at https://sermanet.github.io/imitat

    Learning Human Motion Models for Long-term Predictions

    Full text link
    We propose a new architecture for the learning of predictive spatio-temporal motion models from data alone. Our approach, dubbed the Dropout Autoencoder LSTM, is capable of synthesizing natural looking motion sequences over long time horizons without catastrophic drift or motion degradation. The model consists of two components, a 3-layer recurrent neural network to model temporal aspects and a novel auto-encoder that is trained to implicitly recover the spatial structure of the human skeleton via randomly removing information about joints during training time. This Dropout Autoencoder (D-AE) is then used to filter each predicted pose of the LSTM, reducing accumulation of error and hence drift over time. Furthermore, we propose new evaluation protocols to assess the quality of synthetic motion sequences even for which no ground truth data exists. The proposed protocols can be used to assess generated sequences of arbitrary length. Finally, we evaluate our proposed method on two of the largest motion-capture datasets available to date and show that our model outperforms the state-of-the-art on a variety of actions, including cyclic and acyclic motion, and that it can produce natural looking sequences over longer time horizons than previous methods

    Pose Embeddings: A Deep Architecture for Learning to Match Human Poses

    Full text link
    We present a method for learning an embedding that places images of humans in similar poses nearby. This embedding can be used as a direct method of comparing images based on human pose, avoiding potential challenges of estimating body joint positions. Pose embedding learning is formulated under a triplet-based distance criterion. A deep architecture is used to allow learning of a representation capable of making distinctions between different poses. Experiments on human pose matching and retrieval from video data demonstrate the potential of the method
    • …
    corecore